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A B S T R A C T

A substantial body of literature has provided evidence for the role of gut microbiota in metabolic diseases
including type 2 diabetes. However, reports vary regarding the association of particular taxonomic groups
with disease. In this systematic review, we focused on the potential role of different bacterial taxa affecting
diabetes. We have summarized evidence from 42 human studies reporting microbial associations with dis-
ease, and have identified supporting preclinical studies or clinical trials using treatments with probiotics.
Among the commonly reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akker-
mansia and Roseburiawere negatively associated with T2D, while the genera of Ruminococcus, Fusobacterium,
and Blautia were positively associated with T2D. We also discussed potential molecular mechanisms of
microbiota effects in the onset and progression of T2D.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The microbiome has been associated with pathophysiology of
most chronic diseases. Type 2 diabetes (T2D) is no exception to this
rule. Indeed, there is evidence for the effects of microbiota on glucose
metabolism in both preclinical animal models of T2D and in healthy
animals. Therefore, there is considerable interest in potential use of
microbiota in clinical applications for understanding and treating
T2D. At first glance, however, the microbiome literature on T2D
appears chaotic and concerns have been raised about variability of
the results. Different taxa are reported to be associated with T2D in
different studies. Furthermore, a recent large study observed that dif-
ferent microbes were found associated with the same metabolic out-
comes in different geographical areas [1]. While this might appear
somewhat discouraging it is important to remember that discrepan-
cies between results and disagreements about interpretations are
common features of any emerging field in science. As a research com-
munity, we should not shy away from these problems, rather under-
stand which aspects of the current literature are robust and which
ones are not. A key issue moving forward is to identify properties of
the microbiome and T2D that contribute to this apparent lack of
reproducibility. In this review, we researched recent literature
regarding microbiome in type 2 diabetes patients and summarize the
most reliable findings.
2. Bacteria involved in T2D

Out of 42 human observational studies that investigated T2D and
the bacterial microbiome, the majority of studies reported associa-
tions between specific taxa and disease or its phenotypes (see Sup-
porting Table 1 and “Search strategy and selection criteria” below).
However, only a handful reported similar results. Among the com-
monly and consistently reported findings, the genera of Bifidobacte-
rium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were
negatively associated with T2D, while the genera of Ruminococcus, Fuso-
bacterium, and Blautia were positively associated with T2D (Fig. 1).
Lactobacillus genus, while frequently detected and reported, shows
the most discrepant results among studies. Interestingly, different
macro-metrics of microbial communities, such as several indexes of
diversity and the Bacteroidetes/Firmicutes ratio that have been previ-
ously suggested as markers of metabolic disease did not show consis-
tent associations with T2D (Table 1).

Bacteroides and bifidobacterium represent beneficial genera most
frequently reported in studies of T2D.

Bifidobacterium appears to be the most consistently supported by
the literature genus containing microbes potentially protective
against T2D. Indeed, nearly all papers report a negative association
between this genus and T2D [2�9]; while only one paper reported
opposite results [10]. Furthermore, some studies also found a
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Table 1
Number of reports examining association between T2D and diversity of microbiota or Bacteroides/Firmicutes ratio.

Index # Reports No association References (PMID) Positive References (PMID) Negative References (PMID)

Alpha diversity Shannon 13 9 24013136, 29998997,
29280312, 29922272,
29596446, 27151248,
26756039

2 30397356, 26941724 2 27974055, 27151248

Chao1 8 6 24013136, 29998997,
29280312, 29922272,
26756039, 27151248

2 26941724, 29789365 0

Simpson 3 1 29998997 1 26941724 1 29789365
Beta diversity 8 7 24988476, 28530702,

24997786, 29280312,
29922272, 29596446,
27151248

0 1 27974055

Bacteroides/Firmicutes ratio 14 6 24013136, 26756039,
29789365, 29434314,
29657308, 29998997

3 20140211, 29434314,
23032991

4 23657005, 27974055,
26919743, 22293842
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negative association between specific species such as B. adolescentis,
B. bifidum, B. pseudocatenulatum, B. longum, B. dentium and disease in
patients treated with metformin or after undergoing gastric bypass
surgery [6,11]. According to our literature search, Bifidobacterium has
not been used alone as probiotics for T2D. However, almost all animal
studies that tested several species from this genus (B. bifidum, B. lon-
gum, B. infantis, B. animalis, B. pseudocatenulatum, B. breve) showed
improvement of glucose tolerance [12�16]. Thus, animal studies
strengthen the idea that Bifidobacterium naturally habituating the
human gut or introduced as probiotics play protective role in T2D.

The second most commonly reported genus was Bacteroides.
Eight studies have reported associations between the abundance of
this genus and T2D. Among these, five cross-sectional studies
[3,17�20] show negative associations with disease while three other
studies [6,11,21] that involved some type of treatment reported posi-
tive associations. This apparent inconsistency can be explained by
previously reported antibiotic effect of metformin [22] and/or poten-
tial feedback mechanisms on gut microbiota resulting from improved
human physiology. Interestingly, in He et al. [1,23] 21 out of 23 OTUs
of Bacteroides detected in their study were negatively associated
with T2D. Accordingly, in investigations that analyzed this genus on
the species level, Bacteroides intestinalis, Bacteroides 20�3 and Bacter-
oides vulgatus were decreased in T2D patients and Bacteroides sterco-
ris were enriched after sleeve gastrectomy (SG) surgery in T2D
patients with diabetes remission [5,11,17,24]. We also found only
two experimental animal studies testing the ability of Bacteroides to
treat diet induced metabolic disease. In these studies, administration
of Bacteroides acidifaciens [25] and Bacteroides uniformis [26]
improved glucose intolerance and insulin resistance in diabetic mice.
Together, these studies indicate that Bacteroides plays a beneficial
role on glucose metabolism in humans and experimental animals.

While Roseburia, Faecalibacterium, and Akkermansia were not
reported as frequently as the two genera above mentioned (Bifido-
bacterium, Bacteroides) in the 42 studies we reviewed, but those gen-
era were also found to be consistently negatively associated with T2D
in human studies.

In five case-control studies Roseburia was found in lower frequen-
cies in T2D group than in healthy controls [3,17,27�29]. Accordingly,
investigations that were able to assign Roseburia to a species level
also reported a negative association with disease for Roseburia inuli-
nivorans, Roseburia_272, and one unclassified OTU from this genus
[11,17,24]. Only one paper reported an opposite result for Roseburia
intestinalis [17].

Two case-control studies reported lower frequencies in the dis-
ease group for Faecalibacterium [2,28]. Nevertheless, this genus was
also found to be decreased after different types of antidiabetic treat-
ments ranging from metformin and herbal medicine [30] to bariatric
surgery [11]; only one study reported an opposite effect [31].
Moreover, studies that were able to analyze this genus at species
level usually detected F. prausnitzii. This species was found to be neg-
atively associated with T2D in four out five human case control stud-
ies [17,24,32�34]. While it is a popular probiotic for colitis [35], there
were few attempts to use F. prausnitzii as a probiotic for metabolic
disease.

Interestingly, in one study the administration of F. prausnitzii
resulted in improvement of hepatic function and decreased liver fat
inflammation in mice with diet-induced metabolic disease without
affecting blood glucose [36]. Finally, it was also shown that another
species of this genus, Faecalibacterium cf, was associated with remis-
sion of diabetes after bariatric surgery [11].

Akkermansia muciniphila is a relatively recently discovered
member of commensal microbiota [37]. Its beneficial effect on host
glucose metabolism was first reported in animal models [38,39]. In
agreement with animal studies, the negative association between the
abundance of this bacterium and T2D has been reported in human
studies [17,38].

In summary, a decrease in at least one of these five phylogeneti-
cally distant genera (Bacteroides, Bifidobacterium, Roseburia, Faecali-
bacterium, and Akkermansia) in patients was found in approximately
half of T2D microbiome studies suggesting their potential role
beyond serving as a biomarker. Supporting this notion, the majority
of these bacteria have been tested as probiotics for metabolic disease
in mice, but more rarely in humans [12�16,25,26,36�42]. The poten-
tial mechanisms of interaction between these microbes and mamma-
lian organisms are discussed later in this paper.

Lactobacillus genus presents a complex case of apparently discor-
dant results when considering all association studies, i.e. including
those that analyzed changes after treatments (Fig. 1). However,
cross-sectional studies of patients versus controls reported positive
association between abundances of this genus and T2D in five out of
six papers [3�5,29,43]. Furthermore, several associations of this
genus tend to be species-specific. For example, while L. acidophilus
[34], L. gasseri [24], L. salivarius [24] were increased, L. amylovorus
[29] was decreased in T2D patients suggesting a high diversity in
functional impact on host metabolism by bacteria from this genus.
Moreover, several species from this genus have been also tested as
probiotics. Experimental studies in mice show mostly beneficial
effects in the models of T2D such as L. plantarum [44�47], L. reuteri
[48], L. casei [49], L. curvatus [50], L. gasseri [51], L. paracasei [52], L.
rhamnosus [53], L. sakei [54]. More importantly, twenty-five human
clinical trials [55�79] employed twelve different species of Lactoba-
cillus with ten of those studies [55-62,64,79] adding other probiotics.
Out of eleven studies [58�64,72,76,77,79] that showed some protec-
tive effect, the majority combined other genera, most frequently Bifi-
dobacterium [58�62,64,79], suggesting that Lactobacillus and
Bifidobacterium may work in a synergistic manner. Species L.
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Fig. 1. Microbial genera most frequently found to be associated with T2D. Number of studies reporting one of the indicated genera in association with T2D (without treatment), and
including anti-diabetic therapy (All) in addition to the largest human study by He et al., 2018 [1].
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sporogenes [76,77], L. casei Shirota [63], L. reuteri [72] used as mono-
probiotics have been reported to improve T2D related symptoms in
humans.

L. plantarum, bacteria found in fermented food products, is inten-
sively studied in animal systems, with many studies showing that L.
plantarum improves glucose metabolism in diet-induced and genetic
models of T2D [44�47] mice; only one reported with no significant
effect of this treatment [80]. However, this species had no significant
effect on glucose metabolism in four clinical trials [68�71]. Thus, it
seems that Lactobacilli anti-diabetic effect is seen more frequently
when they are a part of probiotic cocktail rather than administered
individually [58,61,62,64].

Overall, Lactobacillus genus is highly diverse and contains the
highest number of OTUs in the human gut among potentially probi-
otic bacteria. Its effects on T2D seems to be species-specific or even
strain-specific, which might explain why genus level analysis lacks
consistency amongst studies using this bacteria (Fig. 1).

Fewer studies (11 out of 42) reported positive associations
(increase in disease) of microbiota with T2D and/or hyperglycemia.
Specifically, Ruminococcus, Fusobacterium, and Blautia have been
reported in a positive association with T2D. On one hand, consistent
findings have been reported in 5 studies on Ruminococcus genus
[3,17,28,31,81] and 3 studies on Fusobacterium [2,4,6]. On the other
hand, the studies reporting species levels of these bacteria reported
conflicting results [6,11,34]. For example, while one study demon-
strated that Ruminococcus sp. SR1/5 enriched by metformin treat-
ment [6], another found Ruminococcus bromii enriched and
Ruminococcus torques decreased after bariatric surgery and diabetes
remission [11]. It is possible that different types of treatments might
be a major reason for the inconsistences between results of these
studies.

Blautia genus has been found increased in disease groups in three
out of four cross-sectional studies for T2D [17,18,82,83] and reduced
after bariatric surgery [31]. Disagreeing with these reports, Blautia
spp. were reported to increase after treatment with metformin in
another study [30]. Importantly, results by He et al. 2018 [1], are con-
cordant with the genus level analyses demonstrating positive associ-
ations between T2D and several OTUs of all three of these genera.
The question still remains whether these bacteria play a causal role
in T2D since there are no studies investigating these potentially
harmful bacteria in animal models of T2D.

In summary, our review of literature regarding overall diversity
and other macro-metrics of microbial communities failed to show a
relation to diabetes (Table 1). However, some taxa have been system-
atically implicated in T2D. Surprisingly, some taxa are consistently
associated with protection from T2D at genus level (e.g. Bacteroides,
Bifidobacterium, etc.) or even phylogenetically at higher levels (e.g.
Actinobacteria [7,17]) whereas others (e.g. Lactobacilli) show only
species- or strain-specific effects. This phenomenon might be to be
associated with a diversity of a given genus habituating the human
gut (i.e. the larger a number of strains of a given genus found in
human gut, the more strain-specific effects are observed). Impor-
tantly, several of these microbes are currently tested as probiotics in
mouse and human studies.

3. Potential mechanisms of microbiota effects on metabolism in
the T2D patient

Multiple molecular mechanisms of gut microbiota contribution to
metabolic disease and T2D have been recently reviewed elsewhere
[84]. Microbiota modulates inflammation, interacts with dietary con-
stituents, affects gut permeability, glucose and lipid metabolism,
insulin sensitivity and overall energy homeostasis in the mammalian
host (Fig. 2). Herein, we summarize the mechanisms whereby specific
taxa highlighted earlier in this review can affect T2D.

3.1. Modulation of inflammation

Overall, T2D is associated with elevated levels of pro-inflamma-
tory cytokines, chemokines and inflammatory proteins. While some



Fig. 2. Literature-based network analysis of potential effects on metabolism of bacterial taxa consistently found in association with human T2D (shown in Fig. 1). References corre-
sponding to each edge can be found in the text.
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gut microbes and microbial products especially lipopolysaccharides
(LPS) promote metabolic endotoxemia and low-grade inflammation,
others stimulate anti-inflammatory cytokines and chemokines. For
example, induction of IL-10 by species of Roseburia intestinalis, Bac-
teroides fragilis, Akkermansia muciniphila, Lactobacillus plantarum, L.
casei [37,85�88] may contribute to improvement of glucose metabo-
lism since overexpression of this cytokine in the muscle protects
from ageing-related insulin resistance [89]. R. intestinalis can also
increase IL-22 production, an anti-inflammatory cytokine [90,91]
known to restore insulin sensitivity and alleviate diabetes [92]. It can
also promote T regulatory cell differentiation, induce TGF-b and sup-
press intestinal inflammation [85,90,91]. Likewise, Bacteroides the-
taiotaomicron induces expression of T regulatory cell gene expression
[90].

Inhibition of pro-inflammatory cytokines and chemokines is
another route used by beneficial microbes to prevent inflammation.
Various species of Lactobacillus (L. plantarum, L. paracasei, L. casei)
can decrease IL-1b, Monocyte Chemoattractant Protein-1, Intercellu-
lar adhesion molecule-1, IL-8, CD36 and C-reactive protein [93,94]. L.
paracasei and B. fragilis inhibit expression of IL-6 [86,95]. Similarly,
Lactobacillus, Bacteroides and Akkermansia have been found to sup-
press TNF-a [96,86�88,95,97,98]. L. paracasei and microbial anti-
inflammatory molecule from F. prausnitzii inhibit the activity of NF-
kB [95,99]. Similarly, Roseburia and Faecalibacterium are butyrate
producing bacteria and butyrate is also known to inhibit the activity
of NF-kB [100,101]. Lactobacillus casei and Roseburia intestinalis
decrease another pro-inflammatory cytokine IFN-g [90,91,102]
whereas Roseburia intestinalis can inhibit IL-17 production [90,91].
Bacteroides thetaiotaomicron reduces Th1, Th2 and Th17 cytokines in
mono-associated mice [90].

Potentially detrimental microbes in T2D (pathobionts), like Fuso-
bacterium nucleatum and Ruminococcus gnavus can increase several
inflammatory cytokines, albeit in other inflammatory diseases
[103,104].
3.2. Gut permeability

Increased intestinal permeability is a characteristic of human T2D.
It results in translocation of gut microbial products into the blood
and causes metabolic endotoxemia [105]. Two species (Bacteroides
vulgatus and B. dorei) from the potentially beneficial for T2D genera
have been found to upregulate the expression of tight junction genes
in the colon leading to reduction in gut permeability, reduction of
LPS production and amelioration of endotoxemia in a mouse model
[106]. Another probiotic bacterium, Akkermansia muciniphila,
decreased gut permeability using extracellular vesicles which
improve intestinal tight junctions via AMPK activation in epithelium
[42]. The outer membrane protein (Amuc_1100) of this bacterium
enhances the expression of occludin and tight junction protein-1
(Tjp-1) and improves gut integrity [37]. Amuc_1100 also inhibits
cannabinoid receptor type 1 (CB1) in the gut, which in turn,
reduces gut permeability and systemic LPS levels [37]. While a
specific bacterial component was not determined for Faecalibacte-
rium prausnitzii, it was shown that the supernatant from the cul-
tured bacterium enhances the expression of tight junction
proteins improving intestinal barrier functions in colitis model
[107]. Finally, butyrate, produced by Faecalibacterium, Roseburia,
also have potential to reduce gut permeability through serotonin
transporters and PPAR-g pathways [101].

3.3. Glucose metabolism

Gut microbiota may also affect T2D by influencing glucose homeo-
stasis and insulin resistance in major metabolic organs such as liver,
muscle and fat, as well as by affecting digestion of sugars and produc-
tion of gut hormones that control this process. For example, one of
the potential probiotics discussed above (Bifidobacterium lactis) can
increase glycogen synthesis and decrease expression of hepatic glu-
coneogenesis-related genes [108]. In the same report, B. lactis
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improved the translocation of glucose transporter-4 (GLUT4) and
insulin-stimulated glucose uptake.

Lactobacillus gasseri BNR17 also increases GLUT-4 expression in the
muscle with potential anti-diabetes effect [109]. Akkermansia mucini-
phila and Lactobacillus plantarum reduce the expression of hepatic fla-
vin monooxygenase 3 (Fmo3) [37,93], a key enzyme of xenobiotic
metabolism, whose knockdown has been found to prevent develop-
ment of hyperglycemia and hyperlipidemia in insulin resistant mice
[110]. Lactobacillus casei can ameliorate insulin resistance by increas-
ing the mRNA level of phosphatidylinositol-3-kinase (PI3K), insulin
receptor substrate 2 (IRS2), AMPK, Akt2 and glycogen synthesis in the
liver [97,111]. The effect of this particular microbe is not limited to the
effects on liver. Indeed, L. casei also reduces hyperglycemia via a bile
acid-chloride exchange mechanism involving the up regulation of
multiple genes, i.e., ClC1-7, GlyRa1, SLC26A3, SLC26A6, GABAAa1,
Bestrophin-3 and CFTR [112]. It also decreases the insulin-degrading
enzyme (IDE) in the caco-2 cells and insulin-like growth factor binding
proteins-3 (IGFBP-3) in the white adipose tissue [97,111,113]. L. rham-
nosus, another lactobacillus species, increases adiponectin level in the
epididymal fat, thus, improving insulin sensitization [98].

Some species of Lactobacillii and Akkermansia muciniphila possess
potent alpha-glucosidase inhibitory activity that prevents the break-
down of complex carbohydrates and reduces postprandial hypergly-
cemia [52]. Microbiota and their products can modulate gut
hormones and enzymes and improve insulin resistance and glucose
tolerance. Butyrate can act as ligand for G-protein coupled receptors
(GPCR41 and GPCR43) in the gut and promotes the release of gut hor-
mones GLP-1, PYY and GLP-2 from entero-endocrine L-cells
(reviewed in [114,115]). Bifidobacterium and Lactobacillus produce
bile salt hydrolases, which convert primary conjugated bile salts into
deconjugated bile acids (BA) that are subsequently converted into
secondary BA. Secondary BAs activate the membrane bile acid recep-
tor (TGR5) to induce the production of GLP-1 (reviewed in [114]).

3.4. Fatty acid oxidation, synthesis and energy expenditure

Increasing fatty acid oxidation and energy expenditure and reduc-
ing synthesis of fatty acids ameliorates obesity and consequently T2D
[116]. Akkermansia muciniphila, Bacteroides acidifaciens, Lactobacillus
gasseri and short chain fatty acids have been reported to increase
fatty acid oxidation in the adipose tissue.

For example, Akkermansia muciniphila has been found to increase
the levels of 2-oleoyl glycerol (2-OG), 2-palmitoylglycerol (2-PG), 2-
acylglycerol (2-AG) in the adipose tissue which increase the fatty acid
oxidation and adipocyte differentiation [39]. Furthermore, Bacter-
oides acidifaciens also improves fatty acid oxidation in the adipose tis-
sue via TGR5-PPAR-a pathway [25]. Likewise, butyrate can promote
fatty acid oxidation and thermogenesis by inhibiting the histone
deacetylation process in the muscle which increases energy expendi-
ture partially by promoting mitochondrial functions in the muscle
[117]. In liver and adipose tissue, butyrate and other two SCFAs, pro-
pionate and acetate, decrease the expression of PPAR-g [118] which
in turns increases fatty acid oxidation. Lactobacillus gasseri has been
shown to reduce obesity by increasing the fatty acid oxidation genes
and reducing fatty acid synthesis related genes [109]. Serum level of
malonidialdehyde, a marker of oxidative damage of lipids, has been
found to be reduced by Akkermansia muciniphila and Lactobacillus
casei in diabetic rodents [87,96]. Hence, members of microbiota with
beneficial effect on T2D modulate fatty acid metabolism and associ-
ated energy expenditure in the host that results in alleviation of obe-
sity and accompanying T2D.

3.5. Combined effects of bacteria

Besides the above-mentioned mechanisms, some microbes can
also affect the host physiology by increasing other potential
beneficial microbiota or by cross-feeding. Several species of Bifodo-
bacterium were shown to have cross feeding interaction with other
microbiota like Faecalibacterium and Roseburia [119,120]. Lactobacil-
lus rhamnosus can increase Bifidobacterium abundance in the cecum
of rats [98]. L. casei has been found to increase the butyrate producing
bacteria [97,111].

4. Contribution of microbiota to the success of drug therapy for
T2D

The interplay of drugs and gut microbiota is receiving much-
deserved interest (reviewed in [121]). It is well known that antibiot-
ics [122,123], non-antibiotic drugs [124] and anti-diabetic drugs
(Table 2) can modulate microbiota and improve diabetes. Similarly,
the baseline microbiota can positively and negatively affect the phar-
macokinetics and pharmacodynamics of drugs and numerous chemi-
cals via a variety of mechanisms (reviewed in [125]). Fewer studies,
however, have examined how altering gut microbiota (via pre- and/
or probiotics) changes the effects of anti-diabetic drugs.

One recent study examined effects of a probiotic Bifidobacterium
animalis ssp. lactis 420, prebiotic polydextrose and their combination
with sitagliptin in diabetic mice [126]. The combination of sitagliptin
with pre- and probiotics was effective in reducing several T2D
parameters. A similar study in Zucker diabetic rats observed that
combining prebiotic polysaccharide with the antidiabetic drugs met-
formin and sitagliptin reduced hyperglycemia and adiposity com-
pared to using only the drugs [127]. In another study, streptozotocin-
induced diabetic mice were treated with a combination of a prebiotic
and metformin. Improvements in fasting blood glucose, glucose toler-
ance and insulin resistance were observed with the combined ther-
apy, as compared to metformin or MOS alone [128]. Thus, a new
direction in the microbiome research has emerged focused on the
interaction between anti-diabetic drugs and microbiota. These stud-
ies should answer important questions such as (1) how different
anti-diabetic drugs affect microbiota; (2) which characteristics of gut
microbiota are underlying different responses to anti-diabetic drugs;
and (3) which co- pre- and probiotics are needed to improve
response to medication.

5. Outstanding questions

T2D is a multi-organ, heterogeneous, multi-factorial disease mak-
ing the dissection of causative microbes from the gut microbiome chal-
lenging. In human studies, confounding factors like geographic
location, race, culture, health status and drug-use lead to inconsistency
in identifying microbiota associated with T2D [1]. Moreover, due to
challenges in sampling from the intestine of humans, most studies use
stool samples for microbiota analysis. However, the stool microbiota
profile does not fully reflect the gut microbiome. Furthermore, most
studies focused on genomics, rarely studying the transcriptome, prote-
ome or metabolome. Even at the genomic level, deep shotgun
sequencing is expensive, making marker-based amplicon sequencing
such as 16S rRNA gene prevailing. Further, the existing sequencing
and analysis technologies rarely identify (annotate) microbes at spe-
cies or strain levels. Considering that the functional capacity varies
between strains from the same species, identification of microbes and
microbial genes associated with disease is challenging.

A significant problem in the field is that the majority of human
association studies do not attempt to infer microbes that may have
contributing and/or causal role in T2D. Although inference of causal-
ity is a complex statistical problem, it is possible for host-microbiome
interactions. Indeed, new approaches, such as Transkingdom Net-
work Analysis [122] and novel application of Mendelian Randomiza-
tion methods [129], have been recently developed and validated to
answer which microbes and microbial genes/pathways are in control
of host physiological processes.



Table 2
Contribution of microbiota to the success of therapy of T2D.

Anti-diabetic Drug Effects on Microbiota References (PMID) References (PMID)
Promotes Reduces

Biguanides (Metformin) Akkermansia muciniphila, Escher-
ichia,Bifidobacterium adoles-
centis, Lactobacillus,
Butyrivibrio, Bifidobacterium
bifidum, Megasphaera, Preve-
tolla, Escherichi-Shigella, Erysi-
pelotrichaceae incertate sedis,
Fusobacterium, Flavonifractor,
Lachnospiraceae, Lachnospira-
cea incertae sedis, and Clostrid-
ium XVIII and IV

23804561, 28530702, 25038099,
27999002, 29056513,
30261008, 30815546,
29789365

Intestinibacter, Romboutsia, Pep-
tostreptococcaceae_unclassi-
fied, Clostridiaceae_1_unclassi-
fied, Asaccharospora, Alistipes,
Oscillibacter, Bacteroides, Para-
bacteroides, un-
Ruminococcaceae

28530702, 30261008, 29789365

Alpha-glucosidase Inhibitors (eg.
Acarbose, voglibose, miglitol)

Lactobacillus, Faecalibacterium,
Dialister,Subdoligranulum,
Allisonella,Megasphaera, Bifi-
dobacterium, Enterococcus,
faecalis

28130771, 29176714, 25327485 Butyricicoccus, Phascolarctobacte-
rium,Ruminococcus, Egger-
thella, Bacteroides,
Oribacterium, Erysipelotricha-
ceae,Coriobacteriaceae,
Bacteroides

28130771, 28349245, 29176714,
25327485

GLP-1 Receptor agonist(eg.
Liraglutide)

Akkermansia muciniphila, Bacter-
oides acidifaciens, Lachnoclos-
tridium, Flavonifractor,
Ruminococcus_gnavus,Allobac-
ulum, Turicibacter, Anaeros-
tipes, Lactobacillus,
Butyricimonas, Desulfovibrio

30815546, 30292107, 29171288,
27633081

Helicobacter, Prevotella, Rumino-
coccaceae, Christensenellaceae,
Roseburia, Candidatus Arthro-
mitus, Marvinbryantia,Incertae
Sedis

30292,107,29171288, 27633081

Thiazolidinediones
(Pioglitazone)

Proteobacteria 27751827

DPP-4 Inhibitors (Vildagliptin,
sitagliptin,saxagliptin)

Lactobacillus, Streptococcus, Bac-
teroides acidifaciens, Strepto-
coccus hyointestinalis,
Erysipelotrichaceae, Allobaculu,
Turicibacter,Roseburia

29797022, 29036231, 27633081,
27631013

Oscillibacter, Ruminiclostri-
dium_6, Anaerotruncus, Kur-
thia,Christensenellaceae, Prevo-
tellaceae, Bacteroides,
Prevotella,Blautia,

29797022, 29036231, 27633081,
27631013

SGLT2 Inhibitors (eg.
Dapagliflozin)

Akkermansia, Enterococcus 29703207 Oscillospira 29703207
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Finally, challenges related to animal studies testing effects of
microbiota on diabetes hamper progress. First, discrepancies
between results caused by differences between microbiomes of oth-
erwise genetically identical animals is one problem. Second, current
advanced technologies in gnotobiotics such as studies of germfree
and mono/oligo-colonized animals are currently incompatible with
functional metabolic studies employing metabolic cages and hyperin-
sulinemic-euglycemic clamp techniques. Our research community
should overcome these technical challenges and develop robust
experimental systems to validate predictions coming from human
studies and investigate mechanisms of host-microbiota interactions
in metabolic diseases.

Future research is needed to develop new diagnostic, preventive
and therapeutic microbiota tools for personalized/precision medicine
of T2D. First, design of microbiome studies will need to account for
clinical, molecular, and genetic as well as drug response diversity of
T2D patients stratifying patient populations for analyses. Second,
non-invasive approaches to collect microbiota samples from different
sites of intestinal tract are needed as fecal material is limited in repre-
sentation of gut microbiota. Third, while it is easier to focus on indi-
vidual causal microbes, identifying combination of microbes is
required to truly capture the community-level dynamics of the gut
microbiota. In addition to taxon-based analysis, grouping
microbes by function regardless of taxonomic similarity and func-
tion-based analysis should be pursued. Accordingly, we anticipate
development of a new generation of analytical methods that will
model cause-effect relationships and infer targets of therapeutic
interventions. Finally, in order to test new drugs and probiotics
as well as drug-microbiota interactions, well-defined gnotobiotic
models, specifically humanized microbiota, will become a main
tool in animal studies.
6. Conclusion

Despite multiple studies supporting the importance of gut micro-
biota in pathophysiology of T2D, the field is in early stage. Currently,
we have reached a point in our understanding that some microbial
taxa and related molecular mechanisms may be involved in glucose
metabolism related to T2D. However, the heterogeneity of T2D and
redundancy of gut microbiota do not promise simple interpretations
(e.g. low diversity) and easy solutions (such as fecal transplant from
non-diabetic/non-obese donor). In contrast, we should work towards
precision/personalized medicine selecting anti-diabetics and probiot-
ics for a given patient based on the combination of her/his mamma-
lian and microbial genomes.

7. Search strategy and selection criteria

PubMed and Google Scholar literature searches were performed.
To identify gut microbiome composition of T2D patients, articles
between 2006 and 2018 were included with combinations of the
terms “T2D”, “Glucose”, “gut” “Microbiome” “16S rRNA”, “metage-
nomics”, and “sequencing”. Additional papers relevant to our
research were manually sought through bibliography search. Inclu-
sion criteria in our review were (1) Human case-controlled studies;
(2) articles focused on T2D (3) gut microbiota quantified from stool
samples; (4) Glucose testing performed during the study (5) Either
16S rRNA gene sequencing or metagenomic sequencing performed in
stool samples.

Google scholar and PubMed found 42 papers relevant to our focus.
Articles were rejected if it was determined from the title and the
abstract that the study failed to meet the inclusion criteria. Any ambi-
guities regarding the application of the selection criteria were
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resolved through discussions between at least 3 researchers involved.
Each publication was an academic and peer-reviewed study.

Majority (79%) of studies utilized 16S rRNA gene sequencing with
V3 and V4 regions most frequently (33% and 42%, respectively) tar-
geted for sequencing (Supporting Table 1). Human subjects across all
studies had mean age of 53 years (standard deviation 10 years) and
were equivalently distributed between sexes. On average, patients
had body mass index 28.3 § 3 whereas controls 25.8 § 4.

We searched for mouse colonization studies for the top 8
microbes found in the human-case studies. Articles between 1997
and 2018 were included with combinations of the terms “Mouse”,
“Glucose”, “[selected microbe]”. Selected microbes included: Bacter-
oides, Bifidobacterium, Lactobacillus, Blautia, Faecalibacterium,
Ruminococcus, Roseburia, and Fusobacterium. Inclusion criteria were
(1) Mouse colonization studies; (2) Articles focused on T2D; (3) Glu-
cose testing performed during the study. We also analyzed the litera-
ture on Akkermansia muciniphila, though it is in the species level,
because of its recent emergence as an important potential probiotic
microbe.

Similar to the mouse colonization study literature search, we
searched for results from clinical trials with microbes/probiotic sup-
plementation. Inclusion criteria were: (1) Human Clinical study w/
microbes/probiotic supplementation; (2) Glucose testing performed
during the study; and (3) Microbes or Probiotics from genera identi-
fied in our papers as frequently found in human association studies.
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