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Summary

Osteoarthritis (OA) is the most common joint disease that strongly reduces 
the quality of life in patients; However, no disease-modifying therapy is 
available. For a long time, OA was considered a non-inflammatory disease 
that was the result of ‘wear-and-tear’ and abnormal mechanics, and there-
fore many considered the term ‘osteoarthritis’ a misnomer. However, dur-
ing the last decades the notion arose that inflammation is not only present 
in the majority of OA patients but, rather, actively involved in the pro-
gression of the disease. Influx of immune cells is observed in the synovium 
and a plethora of inflammatory mediators is present in tissues and fluids 
from OA patients. These mediators cause the production of degrading 
enzymes that break down the cartilage matrix, which is the main hallmark 
of OA. Alarmins, which belong to the group of danger signals, have been 
implicated in many inflammatory diseases. They are among the first fac-
tors to be released upon cell stress due to, for example, infection, damage 
and inflammation. They attract and activate cells of the immune system 
and therefore lie at the base of the inflammatory reaction. In this narra-
tive review, an overview of the history of OA, the evolving concept of 
inflammation as important factor in the OA pathogenesis, and particularly 
the central role that alarmins play in the initiation and maintenance of 
the low-grade inflammatory response in OA, is provided. Moreover, the 
targeting of alarmins as a promising approach to dampen the inflamma-
tion in OA is highlighted.

Keywords: alarmins, inflammation, osteoarthritis, pathology, S100A8/A9

Osteoarthritis

Osteoarthritis (OA) is a highly complex and the most 
prevalent joint disorder. Worldwide, 9·6% of men and 
18·0% of women aged more than 60 years suffer from 
symptomatic OA, and a total of 242 million people are 
affected globally [1,2].

Clinical symptoms include severe pain, joint stiffness 
and strongly reduced mobility, which together seriously 
decrease the quality of life [3,4]. Pathologically, OA is 
characterized by changes in all joint tissues caused by 
coinciding catabolic and anabolic processes. Cartilage 
degeneration, ectopic bone formation, subchondral bone 
sclerosis, damage to ligaments and menisci and fibrosis 
and inflammation in the synovial membrane that lines 
the joint cavity are the main disease hallmarks [5].

However, no disease-modifying osteoarthritis drugs 
(DMOADs) are available to date. This limits options for 
therapy to treating symptoms such as pain and often 
leads to joint-replacement surgery at end-stage disease.

The following is a brief narrative overview of the his-
tory of OA, and how the view on the disease shifted 
from being a relatively simple and inevitable ‘wear-and-
tear’ process towards an active disease of the joint as an 
organ where inflammation plays an important role in the 
aetiopathology.

History of osteoarthritis

It is often stated that OA might be the oldest ‘known’ 
disease, with signs of pathology present in dinosaur skel-
etons and ancient human skeletons, possibly because bones 
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carrying evidence of OA have withstood the sands of 
time better than other tissues [6,7]. However, the age of 
recognition of the disease nowadays known as OA is 
more debatable, mainly because of ambiguous nomencla-
ture. From the time of Hippocrates until the 18th century 
all rheumatic complaints were considered to be gout. A 
first separation came with the description of digitorum 
nodi by Heberden [8]. Although OA of the hip was clini-
cally recognized in the early 1800s, it was put on a par 
with rheumatoid arthritis (RA), together referred to as 
arthritis deformans. This term was introduced by Charcot 
and Trastour and later widely publicized by Virchow in 
the mid-19th century, but was used well into the 20th 
century [9–11]. The term osteo arthritis was most prob-
ably introduced by the German orthopaedic surgeon von 
Volkmann in the 1850s. He was also the first to anatomi-
cally and pathologically differentiate OA from RA lesions 
[9]. However, this met with fierce protest, because the 
term suggests the presence of inflammation, a view that 
was not endorsed by many at the time.

Osteoarthritis as a mechanical disease

OA has been considered by many a relatively simple 
‘wear-and-tear’ disease leading to the loss of cartilage. In 
this view, OA was considered the sole consequence of 
fragility of the cartilage matrix due to, for example, age-
ing, which should not be classified as a disease. However, 
the majority of physicians supported Garrod’s view that 
processes such as cartilage erosion, osteophyte formation 
and changes in bone could be the result of a disease 
process, provided that it was present for a long time 
[12]. As a result, because inflammation was not considered 
part of the aetiology, many believed OA to be solely 
driven by mechanical events, which would mean that the 
disease is caused by or related to physical forces or motion. 
For this reason the term osteoarthritis, implying inflam-
mation as the major cause, was considered a misnomer. 
The mechanical origin of OA was thought to be underlined 
by the evidence that ancient skeletons mainly had signs 
of OA in the lower back and shoulders, whereas the 
knees were less affected [13,14]. This is in contrast to 
that observed in patients nowadays, and could be attrib-
uted to differences in physical activity (e.g. due to dif-
ferences in professions). Furthermore, our current 
sedentary lifestyle has increased the prevalence of obesity, 
which strongly associates with knee OA [15,16]. Other 
clues that abnormal mechanics cause OA came from stud-
ies that showed that traumatic event, such as tears of 
the anterior cruciate ligament and meniscus and varus 
malalignment, greatly increase the risk of OA develop-
ment [17–20], whereas individuals with focal high stress 
due to femoroacetabular impingement experience excess 
rates of OA [21,22].

However, the concept of OA as a mechanical disease 
implies that cartilage breakdown is accelerated when the 
cartilage is increasingly loaded. Nevertheless, running, 
which greatly increases stresses on hip and knee joints, 
does not aggravate OA incidence and reduced OA pain 
and hip replacement surgery [23,24].

Moreover, the notion arose that not all OA could be 
attributed to mechanical factors. Why is obesity not asso-
ciated with OA in the hip, whereas this is also a weight-
bearing joint; and why do obese individuals have higher 
rates of hand OA, whereas they do not experience greater 
stresses in those joints [25]?

The evolving concept of inflammation as driver of 
pathology in osteoarthritis

Although inflammation has been incidentally mentioned 
in association with OA since the mid-19th century, it 
was not until the last decades that inflammation was 
increasingly considered to be present and important in 
the development of OA. In fact, tissue and fluid samples 
from OA patients have long been used as negative, non-
inflammatory controls in studies investigating rheumatoid 
arthritis and spondyloarthritis. This concealed the raised 
levels of proinflammatory factors present in OA tissues 
and fluids compared to healthy controls and arguably 
reinforced the idea of OA as a non-inflammatory 
disease.

A big step towards the recognition of inflammation in 
OA was taken in the 1990s, when molecular biology took 
a leap forwards and showed that soluble mediators,  
released by various tissues in the joint, could stimulate 
the production of matrix-degrading enzymes, such as 
matrix metalloproteinases (MMPs) and aggrecanases 
(ADAMTS4/5), which are closely involved in the break-
down of the articular cartilage although, even with these 
findings, it still took more than 10  years before inflam-
mation was broadly accepted as a critical feature of OA 
pathogenesis.

Multiple studies have shown clear signs of synovial 
inflammation that correlate with disease severity, progres-
sion and pain sensitization using arthroscopy, ultrasonog-
raphy or magnetic resonance imaging (MRI) [26–30]. 
Debate remains about whether synovial inflammation is 
causative for OA or rather a secondary effect of joint 
failure and products of matrix degradation. The most 
broadly accepted view is that synovial inflammation is 
the result of cartilage fragments, released due to, for 
example, a traumatic event in the joint, that activate the 
synovial cells to produce proinflammatory factors and 
MMPs, thereby further increasing cartilage degeneration 
[31]. A vicious inflammatory circle ensues in this way. 
An overview of processes that contribute to inflammation 
in OA is given in Fig. 1.
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OA is mainly linked to activation of innate immunity 
by binding of damage-associated molecular patterns 
(DAMPs) to so-called pattern recognition receptors (PRRs) 
[32,33]. Of central importance in the PRR family are the 
Toll-like receptors (TLRs). TLR-2 and TLR-4 have been 
shown to bind a multitude of degraded cartilage extracel-
lular matrix fragments. These fragments include low 
molecular weight hyaluronan, tenascin C, fibronectin, 
biglycan and aggrecan [34–37]. It is believed that these 
fragments might cause the initial trigger that starts the 
inflammatory response in the OA joint. Other local trig-
gers of inflammation include activation of the complement 
system and stimulation of cells by crystals that are present 
in the majority of OA patients [38–40].

Next to local induction of inflammation by danger 
signals, low-grade systemic inflammation and ageing-
induced inflammatory responses have been associated with 
OA development. Low-grade systemic inflammation is 
present in many OA patients. Serum levels of various 
cytokines are increased in OA patients [41]. Moreover, 
OA is strongly linked to obesity and the metabolic syn-
drome. Increased fat mass has been shown to result in 
higher systemic inflammatory factors, such as cytokines 
and various adipose tissue-produced factors called adi-
pokines that have inflammatory functions [42–44].

Furthermore, ageing is associated with an altered inflam-
matory response, also referred to as inflammageing. Cellular 
senescence claims a central spot in this process. Senescent 
cells have an increased production of proinflammatory 
and catabolic mediators [45]. Indeed, proteins secreted 
as the result of this senescence-associated secretory phe-
notype (SASP), such as various cytokines, chemokines 
and MMPs, are abundant in OA tissues and fluids [46].

Together, this shows that inflammation plays a clear 
role in OA development, although the nature of the 
inflammatory reaction is different from RA. Whereas RA 
is characterized by a severe synovial inflammation, a 
chronic but relatively low-grade inflammation is found 
in OA. Activation of the innate immunity in OA results 
in the production of cytokines, such as interleukin (IL)-1β, 

IL-6, IL-8 and tumour necrosis factor (TNF)-α, activation 
of the complement system and production of matrix-
degrading enzymes such as MMPs and ADAMTS4/5. More 
in-depth reviews concerning their involvement in OA can 
be found elsewhere [47–49].

Cells of the innate immune system, such as monocytes 
and macrophages, are mainly associated with the inflam-
matory response in the OA joint. Whereas OA patients 
show an altered T cell profile, the clear involvement of 
these cells in the disease pathogenesis is debatable [50,51]. 
Depletion of macrophages with intra-articular injection 
of clodronate-laden liposomes strongly reduced the MMP-
mediated breakdown of articular cartilage and the forma-
tion of osteophytes in a preclinical model of OA [52,53]. 
Moreover, depletion of macrophages from a cell suspension 
made from human OA synovium reduced the cytokine 
response and activity of matrix-degrading enzymes [54].

Therefore, whereas OA might not comply with the 
classical view of inflammation with the presence of rubor, 
calor, dolor and tumour, and whereas there is no strong 
evidence of the presence of robust adaptive (auto)immune 
reactions, there is a clear involvement of both local and 
systemic inflammation in OA development.

However, results from clinical trials in which inflam-
matory cytokines, such as IL-1β and TNF-α, were targeted 
have been repeatedly disappointing (elegantly reviewed 
in [55]). Targeting more upstream regulators of acute 
inflammation that lead to the production and perpetua-
tion of cytokine production might serve as an interesting 
alternative.

Alarmins

An example of such a group of factors that are released 
during the first phase of inflammation are the alarmins, 
a term proposed by Oppenheim et al. Initially defined as 
molecules that attract and activate antigen-presenting cells 
such as dendritic cells, alarmins are nowadays more broadly 
defined as structurally diverse and evolutionarily unrelated, 
endogenous molecules that are released upon cell stress, 

Fig. 1. Overview of the processes that contribute to inflammation in osteoarthritis. Nowadays it is well accepted that inflammation is present and 
actively involved in the pathogenesis of osteoarthritis (OA). The most broadly supported view is that cartilage extracellular matrix fragments, released 
as the result of an initial trauma or catabolic enzyme activity (a), increase synovial inflammation by stimulation of cells in the synovial lining. 
Activated synovial cells start to produce proinflammatory factors, such as chemokines, cytokines and catabolic enzymes (b). In addition, these cells 
secrete high levels of various alarmins, such as high-mobility group box-1 (HMGB1) and S100 proteins (c). These alarmins initiate a positive-
feedback loop with reciprocal production of chemokines, cytokines and catabolic enzymes, on one hand, and alarmins on the other hand, not only in 
synovial cells, but also in cells in the cartilage and periarticular bone (d). Growth factors and chemokines add to the inflammatory process in the joint 
by stimulating neovascularization and influx of inflammatory cells that also start to produce chemokines, cytokines and catabolic enzymes (e). In 
addition, cellular senescence is associated with an increased release of factors, such as many cytokines and catabolic enzymes, referred to as 
senescence-associated secretory phenotype (SASP), which further stimulates the inflammatory state of the joint (f). Finally, systemic changes are 
associated with inflammation during OA. Increased systemic levels of inflammatory mediators as the result of SASP or ageing and adipokines as the 
result of increased fat mass contribute to the inflammatory milieu in the joint (g). Together, these factors are thought to be involved in the 
pathological processes that take place during OA, such as hypertrophic differentiation of chondrocytes and breakdown of the articular cartilage, 
fibrosis in the synovial tissue, sclerosis of the subchondral bone and ectopic bone formation (these processes are not depicted in this figure).
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which cause inflammation in vivo [56,57]. However, while 
osteoarthritis is characterized by an influx and activation 
of innate immune cells, little is known about the role of 
dendritic cells in this disease, although no profound adap-
tive (auto)immune responses are observed.

While defensins and high-mobility group box-1 
(HMGB1) belong to the first identified, the list of alarmins 
has grown rapidly since then and now includes, but is 
not limited to, heat shock proteins (HSPs), uric acid (UA), 
adenosine triphosphate (ATP), IL-1α and s100 proteins 
[57,58]. An in-depth structural and functional characteri-
zation of the various alarmins is beyond the scope of 
this review and can be found elsewhere [57,59].

Many alarmins are intracellular proteins that are pas-
sively or actively released as the result of stress due to, 
for example, inflammation and tissue damage. Passive 
release can be the result of cell injury or death, such as 
necrosis or netosis. Active release of alarmins is regulated 
by mechanisms that are independent of the endoplasmatic 
reticulum and Golgi route. They include degranulation, 
secretion via the inflammasome and pyroptosis 
[56,60–62].

In the extracellular milieu alarmins bind to a range of 
receptors, among which the TLRs and receptor for 
advanced glycosylation end products (RAGE) are the most 
well-studied. TLR-4, in particular, is used by many alarmins 
[63–66].

Because of their quick release as the result of cell stress 
or non-programmed cell death, alarmins are among the 
first factors to be secreted and, as such, act as first respond-
ers to stimuli. Together with their ability to attract and 
activate immune cells, this puts them at the base of 
inflammatory responses.

Alarmins in inflammatory diseases

Alarmins play an important role in a wide range of dis-
orders involving infection-induced and sterile inflamma-
tion, where they are associated with sustaining 
inflammation and the induction of tissue injury. HMGB1 
and S100A8/A9 have been well characterized in the context 
of sepsis [67–69]. In conditions of sterile inflammation, 
such as haemorrhagic shock and ischaemic injury in mul-
tiple organs, HMGB1 appears to be a crucial factor in 
promoting inflammation [70–73].

Moreover, alarmins are key players in tumour immu-
nology, although they have been attributed paradoxical 
roles. On one hand, factors such as HMGB1 and S100A8/
A9 are involved in tumour promotion via their capaci-
ties to promote cell proliferation, migration and pro-
duction of matrix-degrading enzymes, which together 
result in tumour growth and metastases [74–77]. 
Furthermore, S100A8/A9 promotes the production and 
recruitment of myeloid-derived suppressor cells that 

diminish immunity [78]. On the other hand, alarmins 
can promote anti-tumour immunity by, for example, 
recruitment and activation of dendritic cells and stimu-
lating T helper type 1 (Th1) immune responses 
[79–81].

Finally, it is broadly acknowledged that alarmins play 
central roles in many chronic inflammatory diseases, 
including many arthritides, inflammatory bowel disease 
and atherosclerosis [82–86]. A more detailed overview of 
the contribution of alarmins to inflammatory diseases is 
given elsewhere [57,59].

Alarmins in osteoarthritis

A growing body of evidence shows a central role for 
alarmins in the initiation and maintenance of the low-
grade inflammatory response that is present during OA. 
Interestingly, high levels of many alarmins have been 
described in the synovial fluid of OA patients, including 
HMGB1, UA, ATP, thymosin β4 and various S100 pro-
teins [40,87–92]. Other alarmins are described to have 
increased production and secretion, although the exact 
extracellular localization remains unknown, such as is the 
case for HSPs. Release of alarmins has been shown for 
multiple joint tissues, including the periarticular bone, 
cartilage and synovium. Their release is stimulated by 
proinflammatory and catabolic factors, but also by mechan-
ical stress on the tissues via both active release and as 
the result of cell death in the inflammatory environment. 
In this section, a selective overview is provided of the 
alarmins that are present during OA and how they affect 
the disease pathology.

As described earlier in this narrative, cartilage extracel-
lular matrix fragments such as biglycan, fibronectin, aggre-
can and low molecular weight hyaluronan stimulate cell 
types in the joint via PRRs, leading to the production of 
inflammatory mediators and the attraction of inflamma-
tory cells, and as such act as alarmins [34–37,93]. Moreover, 
they are taken up by synovial macrophages, resulting in 
the activation of proinflammatory responses in these cells.

IL-1α is predominantly released by macrophages as the 
result of stress-induced activation of the inflammasome 
[94]. Stimulation of chondrocytes with IL-1α increases 
nitric oxide production and MMP activity [95]. The role 
of IL-1 in the development of OA has been well inves-
tigated, but debate remains about its importance. Many 
studies describe the catabolic function of IL-1 on cartilage, 
although a preclinical model of OA induced in IL-1α/β–/– 
mice showed that both IL-1α and IL-1β are not involved 
in the disease pathology [48,96].

Other studies have shown increased UA levels in 
synovial fluid, which correlated with levels of IL-1β and 
IL-18 and with OA severity [40]. Furthermore, it was 
tentatively postulated that monosodium UA crystals, 
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which are key stimulators of inflammation in gout, might 
promote OA pathology via activation of the inflamma-
some which leads to the release of IL-1β and other 
alarmins [97].

Defensins comprise another group of alarmins that has 
been linked to a catabolic response in OA. Human 
β-defensin 3 expression in chondrocytes is induced by 
IL-1β and TNF-α. Stimulation of chondrocytes with recom-
binant β-defensin 3 protein increases the production of 
the collagenases MMP1 and MMP13, that are among the 
most potent matrix-degrading enzymes in OA, whereas 
it additionally decreases the production of tissue inhibi-
tors of metalloproteinases (TIMP)1 and TIMP2 [98]. Other 
studies have shown an increased production of β-defensins 
2 and 4 in OA cartilage and menisci, but further studies 
are required to elucidate the role played by these alarmins 
[99,100].

ATP is released from cells upon cell stress. In turn, 
ATP has been shown to stimulate both chondrocyte death 
and the calcification of cartilage [101]. Furthermore, a 
recent study shows the activation of pyroptosis in OA 
fibroblast-like synoviocytes by ATP together with TLR-4 
ligands [102,103]. Finally, ATP increases pain sensitivity 
(hyperalgesia) via binding to the purinergic P2X3 and 
P2X2/3 receptors [89,104].

Although these studies suggest the involvement of these 
alarmins in OA, many aspects about their involvement 
remain unknown and therefore more (pre-)clinical studies 
are needed to further elucidate their importance and 
mechanism of action in the OA pathogenesis.

HMGB1

HMGB1 levels are increased in synovial fluid of OA 
patients, which correlates with disease severity. HMGB1 
is released from activated synovial cells, chondrocytes and 
necrotic bone cells under the influence of cytokines such 
as IL-1β and TNF-α [87,105–107]. Conversely, stimulation 
of human OA chondrocytes with HMGB1 results in higher 
secretion of IL-1β and TNF-α [106]. Interestingly, next 
to the direct stimulation of immune cells, HMGB1 can 
form complexes with pathogenic molecules including DNA 
and RNA but also with proinflammatory cytokines such 
as IL-1β, which synergistically activate the immune system 
[108,109]. In this way, HMGB1 stimulates osteoarthritic 
synoviocytes to produce the proinflammatory cytokines 
IL-6 and IL-8, and MMP1, MMP3 and MMP13 [110,111].

HSPs

Other alarmins that are involved in OA are HSPs, even 
though the various family members have been attributed 
divergent effects on joint homeostasis. Increased levels of 
HSP60, HSP70 and HSP90 are found within the OA joint 
[112,113]. HSP90 release results in the progression of 

cartilage degeneration and activation of the synovium, 
while increased extracellular levels of HSP60 and HSP70 
have a chondroprotective effect and show immunomodu-
latory activities [114–116].

S100 proteins

Probably the most well-studied alarmins in the field of 
OA are the S100 family members. S100B is expressed by 
chondrocytes. Once released, S100B is thought to cause 
proinflammatory and procatabolic effects, mainly via 
RAGE-dependent signalling in chondrocytes [117]. This 
results in increased MMP13 expression in chondrocytes 
[118,119]. S100A4 is expressed in OA cartilage under the 
influence of, among others, IL-7, and stimulates chon-
drocytes to produce MMP13 via RAGE [120,121]. 
Furthermore, OA has been associated with increased 
S100A11 production, whose secretion from chondrocytes 
is stimulated by factors such as TNF-α and IL-8 [122,123]. 
In turn, stimulation of chondrocytes with S100A11 stimu-
lates RAGE-dependent hypertrophic differentiation, a 
process that is closely associated with the progression of 
OA [123]. S100A12, which is closely related to S100A8 
and S100A9, is markedly increased in synovial fluid of 
OA patients and correlates with disease severity [90,91]. 
Addition of S100A12 to human chondrocytes increases 
the expression of MMP13 and vascular endothelial growth 
factor (VEGF), again via RAGE-dependent signalling [124].

However, proof for the involvement of these S100 
proteins in catabolic effects on chondrocytes that might 
lead to OA development was mainly obtained with  
in-vitro studies, whereas in-vivo studies using loss-of-
function and gain-of-function experiments have rarely 
been performed.

S100A8/A9

S100A8 and A9 are by far the best-studied S100 proteins 
in the OA context. High levels of S100A8/A9 are present 
in the synovial fluid and serum of OA patients [92,125]. 
Among others, basic calcium phosphate (BCP) crystals 
that are present in the majority of OA patients stimulate 
the production of S100 proteins in macrophages [126]. 
Interestingly, strongly increased expression of S100A8/A9 
has been described with ageing, the dominant risk factor 
for OA [127]. Induction of the experimental collagenase-
induced OA (CiOA) mouse model that involves moderate 
synovitis in S100a9–/– mice, which additionally lack S100A8 
protein in the periphery, results in a strongly decreased 
synovial inflammation and cartilage degradation, indicating 
the crucial involvement of S100A8/A9 in this model [125]. 
In contrast, the same study shows that S100A8/A9 is not 
of importance after induction of the destabilization of 
the medial meniscus (DMM), in which synovitis is scant. 
Higher S100A8/A9 serum levels were measured in early 
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symptomatic OA patients that experience progression of 
joint space width narrowing between baseline measure-
ments and the 2-year follow-up measurement compared 
to non-progressors [125]. S100A8/A9 has been shown to 
result in increased synovial activation, as determined by 
a number of inflammatory cell layers [125]. A later study 
confirmed that S100A8/A9 predominantly mobilizes pro-
inflammatory Ly6Chigh monocytes towards the inflamed 
synovium [128]. This phenomenon might be at least par-
tially responsible for the cartilage breakdown via the 
production of cytokines and matrix-degrading enzymes. 
Indeed, stimulation of human OA synovial tissue and 
macrophages with S100A9 results in increased production 
of proinflammatory (e.g. IL-1β, IL-6, IL-8, and TNF-α) 
and catabolic factors such as MMP1, MMP3 and MMP9, 
which probably runs via TLR-4 signalling, as this has 
been shown to be the dominant S100A8/A9 receptor in 
myeloid cells [69,129,130]. However, in addition to pos-
sible indirect effects on cartilage degeneration via stimula-
tion of cells in the synovium, direct stimulation of 
chondrocytes with S100A8 and S100A9 proteins also 
strongly promotes the production of various proinflam-
matory cytokines such as IL-6 and IL-8, the chemokine 
monocyte chemoattractant protein 1 and MMP1, MMP3, 
MMP9 and MMP13, which was shown to run via TLR-4 
as dominant receptor [131]. Next to the production of 
these proinflammatory and catabolic mediators, S100A8/
A9 is also involved in nociceptive pain sensation, inde-
pendent of the degree of synovitis that is associated with 
different S100 levels ([132] and personal unpublished 
findings).

Interestingly, S100A8/A9 was shown not only to acti-
vate the catabolic aspects of OA, but additionally pro-
motes the anabolic process of ectopic bone/osteophytes 
formation, both in the CiOA experimental model and 
in early human OA, possibly via MMP-mediated remod-
elling of the cartilage matrix that allows osteophytes to 
increase in size [133]. This is underlined by the finding 
that S100A8/A9 induces Wnt signalling, which has been 
shown to promote bone formation [134]. These findings 
are in agreement with other studies that address a more 
immunomodulatory rather than only a proinflammatory 
effect of S100A8/A9([135,136] and personal unpublished 
findings).

Together, these studies make a case for the crucial 
involvement of alarmins, and particularly S100A8/A9, in 
the development of disease pathology during OA.

Dampening the alarm as therapy

In this section, a short overview of how these alarmins 
might serve as therapeutic target for this crippling disease 
will be given. An overview of possible ways to target 
alarmins can be found in Fig. 2. A first route  to inhibit 

the function of alarmins is to block their expression, 
although a clinical application might not be feasible because 
current techniques, such as siRNA or shRNA, do not 
allow widespread targeting of the very high expression 
of many alarmins. Furthermore, care should be taken not 
to ‘overinhibit’ their intracellular expression because of 
the pivotal physiological functions that alarmins carry out. 
This is highlighted by the findings that both S100a8 and 
Hmgb1-deficient mice are not viable [137,138]. As a second 
option, blocking receptors of alarmins using antibodies, 
blocking peptides or small-molecule inhibitors might 
appear to be an attractive therapy, mainly because a mul-
titude of alarmins bind to only a few receptors, such as 
RAGE, TLR-2 and TLR-4. Experimental evidence shows 
that blocking these receptors can lessen the impact of 
alarmins in inflammatory processes [131,139–141]. 
However, a major drawback of such an approach is that 
many infectious agents share the same PRRs with alarmins, 
of which the TLRs are particularly indispensible in host 
defence. Blocking PRRs will therefore most probably result 
in undesired adverse effects. Similarly, the use of soluble 
forms of PRRs, such as soluble TLR-4 and soluble RAGE, 
can scavenge alarmins and therefore decrease the cellular 
signalling, but comprises the same risk of undesired side 
effects.

Two more feasible ways of inhibiting the extracellular 
function of alarmins on the immune system are to block 
their secretion or target the alarmins themselves. Because 
alarmins lack a signal sequence for secretion they are 
secreted via alternative pathways not involving the endo-
plasmatic reticulum and Golgi complexes; blocking their 
release should target these pathways [142–144]. A possible 
advantage is that this would inhibit the simultaneous 
release of multiple alarmins without interfering with the 
secretion of classically released proteins. HMGB1 is released 
via lysosomes. The natural compound glycyrrhizin has 
been shown to block the secretion and additionally inhibits 
the function of HMGB1 [145]. Furthermore, ethyl pyruvate 
inhibits the nuclear-to-cytoplasmic translation of HMGB1, 
thereby decreasing its secretion [146,147]. In addition, 
this compound has been shown to block the NLRP3 
inflammasome. The release of several alarmins is thought 
to follow mechanisms similar to IL-1, which implies a 
contribution of the inflammasome. For this reason, com-
pounds such as ethyl pyruvate and specific caspase 1 
inhibitors would block the release of these alarmins. 
S100A8/A9 is secreted by a tubulin-dependent mechanism 
[144]. Colchicine blocks tubulin polymerization and has 
been shown to decrease S100A8/A9 release [144,148]; 
however, the net outcome of these often relatively aspecific 
methods to block the release of alarmins on the develop-
ment of OA needs further investigation, given the dif-
ferential effects of, for example, S100A8/A9 versus HSPs 
on the cartilage. Moreover, the exact secretion mechanisms 
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for many alarmins remain unknown and the above 
approaches will only block the active release of alarmins, 
whereas passive release as the result of cell death is not 
targeted.

A last approach would consist of selectively blocking 
the alarmins themselves. In this case it will be important 
to identify the dominant alarmin in a particular inflam-
matory disease. Successful attempts to inhibit inflam-
mation have been described using neutralizing antibodies 
directed against HMGB1 and S100A8/A9 proteins in 
preclinical studies [149–153]. Of particular interest is 
the recent identification of the amino acid sequence in 
the active S100A8/A9 complex that activates TLR-4 sig-
nalling. Specific antibodies directed against this epitope 
might consequently block the activation of TLR-4 sig-
nalling and activation of the inflammatory response [154]. 
Also, small-molecule inhibitors, either natural or syn-
thetic, can be used to target alarmins, for example qui-
noline compounds such as paquinimod and laquinimod 
for S100A8/A9 [155,156]. Interestingly, paquinimod 
reduced synovial inflammation, osteophyte formation and 
cartilage damage in a preclinical model for OA [133]. 
However, the efficacy of many of the above approaches 
to reduce OA pathology remains to be investigated.

Conclusion

Whereas OA might not comply with all the classical signs 
of inflammation, there is nowadays a wealth of evidence 
that inflammation is part of the OA pathology and is 
actively involved in the disease pathogenesis via promo-
tion of catabolic responses, either directly in chondrocytes 
or by promoting synovial inflammation and its contribu-
tion to pain sensation. Of particular interest in this process 
are the alarmins, which lie at the basis of the inflamma-
tory response. Further understanding of the functioning 
of alarmins in inflammation brings to light novel and 
promising targets for the development of innovative 

DMOADs, in which the S100A8/A9 proteins are expected 
to claim a central spot based on their broad involvement 
in the OA disease process.
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