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ABSTRACT

Awareness of the human health benefits of blueberries is underpinned by a growing body of positive scientific evidence from human observational
and clinical research, plus mechanistic research using animal and in vitro models. Blueberries contain a large number of phytochemicals, inclu-
ding abundant anthocyanin pigments. Of their various phytochemicals, anthocyanins probably make the greatest impact on blueberry health
functionality. Epidemiological studies associate regular, moderate intake of blueberries and/or anthocyanins with reduced risk of cardiovascular
disease, death, and type 2 diabetes, and with improved weight maintenance and neuroprotection. These findings are supported by biomarker-
based evidence from human clinical studies. Among the more important healthful aspects of blueberries are their anti-inflammatory and antioxidant
actions and their beneficial effects on vascular and glucoregulatory function. Blueberry phytochemicals may affect gastrointestinal microflora and
contribute to host health. These aspects have implications in degenerative diseases and conditions as well as the aging process. More evidence, and
particularly human clinical evidence, is needed to better understand the potential for anthocyanin-rich blueberries to benefit public health. How-
ever, it is widely agreed that the regular consumption of tasty, ripe blueberries can be unconditionally recommended. Adv Nutr 2020;11:224–236.
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Introduction
Blueberries were first popularized as a “super fruit” due
mainly to the high in vitro antioxidant capacity of their abun-
dant polyphenolic compounds. However, direct antioxidant
action of polyphenolic compounds in situ appears unlikely
due to their poor bioavailability (1). Nonetheless, research
regarding foods for health performed during the past 2
decades has revealed a multitude of ways in which blueberries
are bioactive and beneficial to health.
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An increasing body of evidence suggests that blueberries
and anthocyanins reduce biomarkers and risk of diseases
that constitute major socioeconomic burdens, including
cardiovascular disease (CVD), type 2 diabetes mellitus
(T2DM), and neurological decline. In these observational
analyses, anthocyanins often provide benefits over and above
other plant food phytochemicals, including other flavonoids
(2–6). The intake of even moderate amounts of blueberries
(approximately one-third cup) and anthocyanins (<50 mg)
daily is associated with disease risk reduction (2–4, 6–9).

In this narrative, research on the role of blueberries in
cardiometabolic health, neuroprotection, vision, and food
processing is reviewed. Observational evidence is presented
along with results from human clinical studies, and from
animal and in vitro research. Over half of the nearly 200
papers cited in this review were published in the last decade.
Blueberry research is the primary focus of this review;
however, anthocyanin literature is also discussed where
relevant. Interest continues to grow in the potential human
health benefits of blueberries.
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TABLE 1 Total anthocyanin concentration of popular fruit
consumed in the United States

Fruit Description
Number of

samples

Total
anthocyanins

(mg/100 g fresh)

Apple1 Red peel 6 12
Apple1 Yellow peel 2 0
Banana2 — 0
Blackberry2 4 245
Blueberry2 Highbush 7 387
Blueberry2 Lowbush 1 487
Cantaloupe2 — 0
Cherry (sweet)2 4 122
Grape2 Red peel and flesh 5 27
Grape2 Purple peel and

flesh
1 120

Kiwifruit2 — 0
Nectarine3 Yellow peel 5 15
Orange2 Orange flesh — 0
Plum3 Yellow peel 1 0
Plum3 Red peel 2 20
Plum3 Black peel 2 116
Raspberry (red)2 5 92
Strawberry2 8 21
Watermelon2 — 0

1Reference 11.
2Reference 10.
3Reference 12.

Current Status of Knowledge
Blueberry species and composition
Blueberry species of commercial importance include high-
bush blueberry (Vaccinium corymbosum L.), rabbiteye blue-
berry (V. virgatum Aiton), lowbush blueberry (V. an-
gustifolium Aiton), and European bilberry (V. myrtillus
L.). Blueberries are one of the richest sources of antho-
cyanins among common fruits (10–12) (Table 1). An-
thocyanins are the pigments that confer the red, blue,
and purple coloration to ripe berries. During berry ripen-
ing, anthocyanin content rises dramatically to provide
a visual cue to distinguish between early to fully ripe
fruit (13).

Among a selection of 80 highbush and 135 lowbush
blueberry phenotypes, 90% of the phenotypes spanned a 1.6-
fold range in anthocyanin concentration (14). Among the
total 215 blueberry phenotypes, the range between the 10th
and 90th percentiles of cyanidin-3-glucoside equivalents/g
fresh weight was 0.925 to 2.1 mg (14).

Blueberry polyphenolic compounds
Anthocyanin flavonoids account for up to 60% of the
total polyphenolics in ripe blueberries (13). Therefore,
anthocyanins probably make the greatest contribution
to blueberry health benefits. Blueberry polyphenolic
compounds include both flavonoid and nonflavonoid types.
Other classes of flavonoids found in blueberries include
proanthocyanidins (15, 16) and flavonols (17, 18). Abundant
nonflavonoid polyphenolic compounds in blueberries are

the hydroxycinnamic acid esters (especially chlorogenic
acid) (16, 17, 19, 20).

Anthocyanin bioavailability
Associating the in vivo metabolites of anthocyanins with
health outcomes has been difficult. After ingestion, an-
thocyanins are converted to a large number of products
via chemical events and human and microbial metabolism.
Clearance time for anthocyanin metabolites varies widely
(21, 22). To illustrate, within 6 h after humans ingested
13C-labeled anthocyanin, substantial 13C-labeled CO2 was
detected in exhaled breath, which demonstrated rapid and
complete anthocyanin catabolism. However, >50% of the 13C
still remained in the body after 48 h (21). Anthocyanins and
their phase 2 metabolites persist in urine long after antho-
cyanin intake (23), probably due to their transport in bile
(24, 25). Also, anthocyanins and their metabolites become
localized in body tissues (24, 26–29). Due to the catabolic
action of gastrointestinal microflora on anthocyanins and
other food polyphenolics, phenolic acid products are very
abundant in the large intestine (30).

Cardiovascular Health
Population studies in cardiovascular health, berries,
and anthocyanins
The association between a higher anthocyanin intake and
reduction in all-cause mortality risk in a meta-analysis of
6 studies was principally due to a decreased cardiovascular
mortality risk (31). Similar findings were reported in a
meta-analysis of total CVD (RR: 0.89; 95% CI: 0.83–0.96)
(32). In 3 cohort studies, a higher anthocyanin intake was
associated with an ∼25% reduced risk of coronary artery
disease, including fatal and nonfatal myocardial infarction
(33, 34). Higher intakes of blueberries, strawberries, and
total anthocyanins were all associated with a 32% lower
rate of myocardial infarction, and this association was
independent of established risk factors (2). However, in 2
prospective cohort studies no association was found between
anthocyanin intake and stroke risk (34, 35).

Higher anthocyanin intake was associated with an
∼8–10% reduction in hypertension risk in 5 cohort studies
(3, 36, 37). A higher anthocyanin intake was associated with
a 10% lower risk of incident hypertension in a cohort of
over 87,000 participants examined over a period of 14 y (3).
The greatest risk reduction was observed in women aged
≤60 y (3). One biomarker, vascular stiffness, was measured
in a cross-sectional study of 1898 carefully phenotyped
twins. In this study, a clinically relevant improvement in
vascular modulation, measured using pulse wave velocity,
was associated with greater anthocyanin intake (6).

Population studies in CVD, obesity, berries, and weight
maintenance
Obesity and overweight are major contributors to CVD
risk (38). Even minor weight gain can increase the risk
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of hypertension (39) and CVD (40, 41). Reducing BMI
by 1–3 kg/m2 was associated with a 2–13% lower risk of
CVD events (41) and mortality (42). In a comparison of
intakes of 16 common fruits, the highest blueberry intake
was associated with the least weight gain (−0.64 kg over
4 y) in a prospective study of over 133,000 men and women
followed for ≤24 y (43). Among 6 classes of flavonoids, a
higher anthocyanin intake had the strongest association with
less weight gain (−0.1 kg per 10 mg anthocyanins) in a study
of 124,000 individuals (44).

Greater anthocyanin intake was associated with 3–9%
lower fat mass and less central adiposity in healthy female
twins (n = 2734) (45) based on body composition assessment
using DXA (46). In this study, the twin with the higher
blueberry intake had a lower fat mass ratio than the co-twin
(45). Results of the twin studies are most interesting because
they are independent of genetic and common environmental
factors.

Clinical studies in cardiovascular health
In clinical research on blueberries, subjects most often have
some CVD risk (e.g., metabolic syndrome markers, T2DM).
In a placebo-controlled study of 58 diabetic patients, blue-
berry intake led to a decline in LDL cholesterol, triglycerides,
and adiponectin and an increase in HDL cholesterol (47).
Intake of purified anthocyanin for 12 wk by 150 hyper-
cholesterolemic subjects was associated with an increase in
HDL cholesterol and a decrease in LDL cholesterol as well
as improved endothelial function (brachial flow-mediated
dilation) (48). Then, after 24 wk of anthocyanin intake by
the same 150 hypercholesterolemic patients, a reduction
was documented in inflammatory markers, including serum
high-sensitivity C-reactive protein, soluble vascular adhesion
molecule-1, and plasma IL-1β (49).

Arterial stiffness was reduced and both systolic and
diastolic blood pressure were decreased by 5–6% after
8 wk of blueberry intake in women with pre- and stage
1 hypertension (50, 51). Similar benefits were observed in
middle-aged unmedicated men with CVD risk factors (51).
In subjects with metabolic syndrome, vascular endothelial
function was improved although blood pressure was unaf-
fected by blueberry intake for 6 wk (52). In a blueberry study
examining participants with metabolic syndrome (n = 115),
after 6 mo of taking either 0, 75, or 150 g, biomarkers
of cardiometabolic function were unchanged in the group
taking 75 g blueberries daily. However, the group taking
150 g blueberries daily had sustained improvements in
vascular function and lipid status. Insulin resistence was not
affected by either dose of blueberries (53). Some clinical
studies have reported little to no effect of blueberry intake
on blood pressure (54, 55). In contrast to these long-
term studies, in a 6-h acute study design, blueberry intake
was associated with short-term improvements in vascular
function measured by flow-mediated dilation in 21 healthy
men (56).

Mechanisms of cardiovascular benefit
Blueberries and anthocyanins benefit cardiovascular health
via antioxidant and anti-inflammatory effects (49, 57) posi-
tive effects on plasma lipid levels, and modulation of glucose
metabolism and endothelial function (see reviews, 58, 59).
Blueberries protect vasculature in various ways that can
be detected by vascular responsiveness, blood pressure,
and arterial stiffness (18, 50–52, 60). These benefits may
involve NO metabolism (53, 61) and effects on endothelium
composition (62) and plasma lipids (47, 48, 63). Most often,
cardiovascular research models employ a relevant stress
treatment (e.g., diet or disease) or examine a population with
existing risk condition(s).

Nonflavonoid catabolites of berry anthocyanins predom-
inate in the large intestine (1) and could interact with the
microbiota to elicit anti-inflammatory or other responses
that contribute to cardioprotective benefits (64). Blueberry
supplementation modified the colonic microflora of rats (65,
66). By use of gene sequencing, 3 new phyla and 22 new
genera of micro-organisms were found to be specifically
associated with blueberry feeding (66). These gene changes
accounted for ∼9% of the entire genome and were associated
with species in the intestinal mucin layer, as well as better
protection from bacterial invasion and greater capacity for
xenobiotic metabolism (66). In a study with high-fat–fed rats,
blueberry intake moderated the negative effects of the high-
fat diet on inflammation and insulin signaling and also led to
modification of the gut microbiota (67).

Prediabetes and T2DM
Population studies in T2DM, blueberries, and
anthocyanins
Prediabetes and T2DM affect ∼100 million adults in the
United States (68). Both prediabetes and T2DM are char-
acterized by poor response to insulin stimulation (i.e.,
insulin resistance) leading to inefficient glucose uptake and
metabolism in insulin-sensitive tissues (69). Of all the fruits
analyzed in 3 prospective studies, blueberries provided the
strongest association, with T2DM risk reduction of 26% (RR:
0.74; 95% CI: 0.66–0.83) (70). In the same cohorts, when the
intake of habitually consumed flavonoids (flavonols, flavones,
flavanones, flavan-3-ols, and anthocyanins) was examined,
intake of anthocyanins and particularly blueberries provided
a similar degree of risk reduction of 23% with consumption
of ≥2 servings weekly or ≤1 serving monthly. There was
no association found between the intake of total flavonoid or
other flavonoid groups and reduced T2DM risk (4).

A meta-analysis of data from 3 US cohorts associated
T2DM risk reduction with higher intake of anthocyanins
(RR: 0.85, 95% CI: 0.80–0.91) and berry fruits (RR: 0.82, 95%
CI: 0.76–0.89) (71). A similar association between T2DM risk
reduction with greater anthocyanin intake was determined
in a Polish cohort (RR: 0.68, 95% CI: 0.48–0.98) (72). In a
cross-sectional study in women, higher habitual intake of an-
thocyanins and flavones was associated with improvements
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in insulin resistance, whereas only anthocyanin was associ-
ated with a decrease in inflammation and high-sensitivity
C-reactive protein (8). Obesity is positively associated with
T2DM risk (73). Greater blueberry and anthocyanin intake
is associated with less weight gain during aging (43–45)
and therefore would support reduced T2DM risk. Notably,
not all observational studies identified an association of
anthocyanin or berry intake with reduced T2DM risk
(74, 75).

Clinical studies in T2DM
In a placebo-controlled study of obese, insulin-resistant
adults, insulin sensitivity was greater after 6 wk of blue-
berry intake (76). Insulin sensitivity was assessed using a
hyperinsulinemic-euglycemic clamp, which directly mea-
sures whole-body glucose disposal (77).

Anthocyanin extract from bilberry and black currant
(80 mg daily) improved insulin sensitivity (HOMA-IR),
plasma lipid profiles, and reduced plasma markers of oxida-
tive stress among 58 T2DM patients compared to placebo
(47). When glucose-modulation effects were examined in a
T2DM population after a single oral dose of either placebo
or 0.47 g standardized bilberry extract containing 36% (w/w)
anthocyanins, bilberry intake lowered plasma glucose and
insulin AUC in the oral glucose tolerance test (78). In a
12-wk trial of 54 overweight young adults, replacing 50 g
carbohydrate with 50 g blueberries daily produced favorable
reductions in body weight (BW), insulin, cholesterol, and
other metabolic factors (63).

Animal and mechanistic studies in T2DM
Rodents with a phenotype and metabolic features of predia-
betes and T2DM, plus diet-induced obesity, are often used to
investigate mechanisms of action. C57BL/6 mice fed a high-
fat (60%) diet for 8 wk had better insulin sensitivity when
blueberries were added to the high-fat diet (79). Also, the
glucose AUC of the mice fed a high-fat diet plus blueberries
was similar to that of mice fed the low-fat diet (79).

In a study where Zucker fatty rats were fed a high-fat
(45%) or low-fat (10%) diet, after 12 wk rats receiving a
high-fat diet plus 2% blueberries and those fed a low-fat
diet had better metabolic markers than mice fed a high-fat
diet without blueberries. At that time rats fed a high-fat diet
plus blueberries had better measures of fasting insulin levels,
insulin resistance (HOMA-IR), and glucose AUC than high-
fat–fed controls (80). Blueberry intake reduced markers of
metabolic syndrome and adiposity in high-fat–fed, obesity-
prone rats (80).

Insulin resistance (HOMA-IR) and glucose tolerance in
obese mice were improved after 12–15 wk of diet supple-
mentation with blueberries (81–83). Obese hyperglycemic
mice that consumed blueberry powder that was sorbed
and concentrated on defatted soybean flour had improved
oral glucose tolerance and fasting glucose concentration,
compared to controls (83).

Several but not all biomarkers of glucose metabolism were
normalized by blueberry intake in obese Zucker rats (84).

In other obese rodent studies, blueberry intake improved
glucose tolerance (85) or not (86), and in some studies insulin
responses were not improved (65, 84, 85, 87). However, in
high-fat–fed mice, inflammatory markers and hypertension
that are associated with obesity were mitigated (87).

Berry intake supports the growth of favorable mucin-
producing bacteria that can protect of the lining of the
gastrointestinal tract, which may mitigate lower intestinal
and systemic inflammation and improve metabolic outcomes
(88, 89).

Neuroprotection, Cognition, and Blueberries
Population studies in neuroscience, blueberries, and
anthocyanins
In a pooled analysis of 2 US cohort studies which examined
almost 150,000 people, lower Parkinson disease risk was
associated with the highest quintile of anthocyanin (RR: 0.76)
and berry (RR: 0.77) intake (P = 0.02) (90). In a prospective
analysis of 16,000 women in the Nurse’s Health Study, greater
intake of blueberries and strawberries was associated with
slower rates of cognitive decline in older adults, with an
estimated delay in decline of about 2.5 y (5).

The risk for Alzheimer disease and other dementias is
associated with cardiovascular and metabolic health risk
biomarkers, including obesity and insulin resistance in
midlife (91–93). Inasmuch as anthocyanins are protective
against CVD and T2DM risks, greater anthocyanin intake
may be associated with reduced risk of Alzheimer-type
dementia in late life.

Clinical studies in neuroscience and blueberries
Cognitive performance in elderly adults improved after
12 wk of daily intake of blueberry (94) or Concord grape
(95) juice. Better task switching and reduced interfer-
ence in memory was found in healthy older adults after
90 d of blueberry supplementation (96). Blueberry powder
intake led to modest benefits in memory performance and
subjective improvements in everyday function among 39
older adults with cognitive complaints (97). These kinds of
improvements reflected better executive ability (97). Inter-
estingly, relatively modest benefits were found in cognitively
unimpaired older adults (96, 97) compared with benefits
measured in participants with mild cognitive impairment.

After 12 wk of blueberry consumption, greater brain activ-
ity was detected using magnetic resonance imaging in healthy
older adults during a cognitive challenge. The detection was
associated with enhanced perfusion in regions mediating
cognitive function (98). Similarly, during a memory test,
regional blood oxygen level-dependent activity detected by
MRI (99) was enhanced in the subjects taking blueberry, but
not in those taking placebo. All subjects in this study had
mild cognitive impairment (99).

Cognitive benefits were detected in school-aged children
in an acute study design where performance on a list-learning
task was improved 2 h after consuming a single dose of
blueberry powder but not placebo (100). Improvement in
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executive and long-term memory in children was associated
with their intake of blueberry powder, with evidence of
a dose-response (15 compared with 30 g powder) (101).
In a crossover trial with children 7- to 10-y old, a single
30-g dose of blueberry powder produced enhanced exec-
utive performance on a timed and graded executive task
(102).

Detecting cognitive benefits of blueberries in healthy
children could be facilitated by tasks that involve a greater
cognitive demand (102). Indeed, advancements in cognitive
assessment tools will aid in examining specific populations.
In particular, methods are needed to measure blueberry
effects in cognitive domains involved in nonpathological
aging, as opposed to domains affected by neuropatholo-
gies like Alzheimer disease. Statistical techniques such as
covariate control and difference scores can help to iden-
tify the effects of phytochemicals like anthocyanins amid
uncontrolled interindividual variation in factors such as
cognitive capability, phase 2 metabolism, and intestinal
microflora.

Animal and mechanistic studies on blueberries and the
brain
Blueberries improved cognitive and motor performance of
aged rats, making them comparable to young animals (103,
104). Similar age-related improvements were observed in
old mice (105). Blueberry-related improvements in long-
term spatial memory of rodents is widely reported (29, 105–
108). Cognitive benefits of blueberries in tasks that engaged
working memory and learning are also documented (105,
108, 109).

Blueberry supplementation protected middle-aged mice
from deficits in cognitive performance related to a high-fat
diet (110). This is interesting in light of the rising incidence of
obesity-related metabolic disorders (111) and the association
between cardiometabolic markers in middle-aged humans
and Alzheimer dementia risk later in life (91–93).

Blueberry supplementation protected vulnerable brain
regions, reduced deficits in spatial memory, and mitigated
markers of inflammation and oxidative stress in a rat
model of accelerated aging due to high-energy particle
exposure (112, 113). In a cell culture model of kainic acid–
induced inflammation, treatment with blueberry polypheno-
lic fractions led to improved calcium buffering and reduced
hippocampal neuron loss (114). Blueberry supplementation
correlated with increases in hippocampal cAMP response
element–binding protein phosphorylation and concentra-
tions of brain-derived neurotrophic factor and improved
performance in spatial working memory tasks of old animals
(115).

Blueberry feeding is reported to upregulate neurogene-
sis, neuroplasticity, brain-derived neurotrophic factor, and
insulin-like growth factor 1 in aged (106) and in young
(107) rodents. Blueberry anthocyanidin glycosides and their
phase 2 metabolites can cross the blood–brain barrier and are
detectable in various brain tissues (24, 27–29, 116, 117).

Blueberries and Anthocyanins in Vision and Eye
Health
Visual function, retinal stress, and anthocyanins
During vision, light reaching the eye is wavelength-filtered
through the cornea, lens, and vitreous humor and focused
onto the neural retina. Then retinal photoreceptors convert
light energy into an electrical signal that is transmitted to the
brain’s visual centers via the axons of the retinal ganglion cells
(RGCs).

The retina has the highest respiratory rate of any other
mammalian tissue (118, 119) and is a significant source of
oxidative stress. The outer segment of the retinal photo-
receptor cell is rich in photopigments (opsin and 11-cis
retinol) imbedded in membranes rich in polyunsaturated
fatty acids which are constantly being renewed (120), thereby
creating very favorable conditions for oxidative stress (121).
Oxidative stress and cell proliferation are exacerbated by
pathological responses to irradiation of the retina (122),
neovascularization (123), and inflammation (124, 125).
Markers of oxidative stress and inflammation increase with
normal aging and can trigger a tissue-adaptive response
(parainflammation) to restore homeostasis in the retina
(126).

Although the retina is protected by an active blood–
brain barrier at the retinal pigmentary epithelium (RPE),
anthocyanins can be detected in ocular tissues. Anthocyanins
were selectively distributed to ocular tissues after oral,
intravenous, or intraperitoneal administration in rats and
rabbits (26). In pigs fed diets containing 0%, 1%, 2%, or 4%
(w/w) blueberries, anthocyanins were detected in the whole
eye in a dose-dependent manner (127).

Population studies on anthocyanins and vision
There are currently very few observational studies examining
anthocyanin intake in relation to ocular disease risk. A
higher total flavonoid intake was associated with a reduced
risk of cataracts in a Finnish population of 10,054 subjects
(128). In a prospective cohort study of >35,000 women
aged ≥45 y, there was a significant association between
blueberry intake and a reduced risk of incident total and
visually significant age-related macular degeneration, but
there was no association with incident cataract (H Sesso,
Brigham and Women’s Hospital, personal communication,
2019). Although macular degeneration is the leading cause of
visual impairment during aging in the developed world, there
are no studies that examine anthocyanin intake in relation to
macular degeneration.

Clinical studies on berry anthocyanins and vision
Compared to animal and in vitro research, there are
relatively few clinical studies examining anthocyanin effects
on human vision, particularly studies that adequately satisfy
design criteria, including randomization, blinding, placebo
control, and crossover, as previously described (129, 130).
In normotensive glaucoma patients (n = 30), visual field
defects were stabilized, ocular blood flow was improved, and
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plasma endothelin was normalized after 6 mo of daily intake
of black currant anthocyanin (50 mg) (131). Similar benefits
were observed in a trial in patients medicated for open-angle
glaucoma, who received 25 mg anthocyanin daily for 2 y
(132). Beneficial effects on intraocular pressure were also
observed in a crossover study (n = 21) after only 4 wk of
50 mg daily intake (133).

Mirtogenol (bilberry and pine bark extract), correspond-
ing to ∼30 mg anthocyanin taken daily for 6 mo, provided
additive benefit to ocular hypertensive patients (134), who
were taking a widely used glaucoma treatment, prostaglandin
F2a analog (Latanoprost) (135). The additive effect of
Mirtogenol could have been due to normalization of capillary
filtration, an antihypertensive effect related to vascular
permeability. This effect was also suggested in a study of
diabetic retinopathy patients using Tegens, a product similar
to Mirtogenol (136). In a study of blueberries, the same
protective effect was documented in an in vitro model of
lipotoxicity-induced vascular endothelial dysfunction where
greater NO bioavailability was linked to the blueberry
effect (137).

An improvement in contrast sensitivity was associated
with the intake of 510 mg bilberry anthocyanins daily in
Tagen-F for 12 mo in human subjects with nonproliferative
diabetic retinopathy (n = 88) (138). In a 1-mo crossover
trial of 30 (139) and 60 normal subjects (140), anthocyanin
intake was associated with an improved capacity for visual
accommodation and a decrease in ocular fatigue of myopic
subjects, possibly by improving contrast sensitivity.

Improvements were reported in dark adaptation threshold
between highest dose and placebo, and visual accommo-
dation shifts after a single dose ingestion of black currant
concentrate at 12.5, 20, or 50 mg/dose (141). In two other
recent crossover studies of normal-sighted adults (n = 60
and 72) there was no effect of blueberry juice intake on
dark adaptation or dark-adapted visual acuity or contrast
sensitivity, although a mild improvement in recovery time
after retinal photobleaching was found (142). Interestingly,
photobleaching recovery effects occurred with daily doses
of either 7 or 346 mg blueberry anthocyanins and after
both 3 and 12 wk of intake. In studies where low doses
of anthocyanins were taken by healthy humans for a
short term, there was no improvement in dark adaptation
threshold, visual acuity, or contrast sensitivity (143–146),
which conflicts with earlier research which reported such
benefits (for review, see references 129 and 130).

Blueberry and anthocyanin effects in animal models of
vision
In studies using light-induced retinal photoreceptor degen-
eration, which is a widely used model of human retinal
dystrophies (147), neuroprotection by blueberry species was
convincingly documented with both long-term (5–35 d)
(148, 149) and short-term (2–72 h) (149–153) prophylactic
treatments with daily anthocyanin doses between 10 and
500 mg. Retinal inflammation, which is a hallmark of many
ocular pathologies, was mitigated in mice fed bilberry extract

(500 mg/kg BW) for 4 d after inflammation was induced
by intraperitoneal injection of LPS (154). In the bilberry
group, retinal electrophysiology was improved, rhodopsin
was preserved, and there was less damage to photoreceptors
compared to controls (154). In a similar model of retinal
inflammation, mice fed for 5 d with 50–200 mg/d bilberry
showed a dose-dependent decrease in neurotoxic NO and
malondialdehyde, combined with an increase in neuropro-
tective antioxidant capacity due to glutathione, vitamin C,
superoxide dismutase, and glutathione peroxidase (155).

Other ocular pathologies targeting primarily the RGC
have also been investigated. The degeneration of RGC in vivo
was mitigated with bilberry extract intake [100 mg/(kg · d)]
in a mouse model of optic nerve injury. Bilberry extract (1%)
mitigated RGC damage in vitro during oxidative conditions
created with 3-(4-morpholinyl) sydnonimine hydrochloride
(156). Bilberry also protected RGC of mice in vivo under
oxidative conditions created by N-methyl-d-aspartic acid
injected into the vitreous (20–100 μg/eye) (156).

Ocular development can be experimentally influenced by
berry intake. When myopia was induced in young chicks
by interposing a strong minus lens in front of the eye,
the impact was less in chicks fed black currant extract
(400 mg/kg BW) for 3 d prior to treatment (157). Retinal
degeneration and cataract development were slowed with
bilberry extract (20 mg/kg BW) in hypertensive OXYS rats
that demonstrate senescence-accelerated expression of traits
and a short lifespan (158). In neonatal rats where cataracts
were induced by subcutaneous injection of sodium selenite,
administration of a polyphenol-enriched fraction of bilberry
at 40 mg/d was sufficient to prevent cataract formation
(159). This effect was probably modulated through the
regulation of nuclear factor erythroid 2–related factor 2 and
hemoxygenase-1 in the lens (159).

Neonatal mice exposed to a high level of oxygen de-
velop vascular complications similar to the retinopathy of
prematurity in humans. Intraocular injection of bilberry
extract (300 ng/eye) after neonatal oxygen exposure inhibited
the formation of neovascular tufts by possible inhibition of
vascular endothelial growth factor A and its downstream-
regulated kinases (160).

Blueberries, anthocyanins, and vision physiology
examined in vitro
The in vitro antioxidative capacity of blueberries and their
anthocyanins, used either prophylactically or as a treatment,
has been demonstrated in vision-relevant models related to
oxygen donation (161, 162), quenching of singlet oxygen
(163), glutathione synthesis (149, 164), and glutamate insults
(165) in both RPE and RGC primary culture cell lines.

The action of anthocyanins as molecular allosteric
effectors has been investigated with the receptor protein
rhodopsin (166) and with bestrophin, a protein involved in
Best vitelliform retinal dystrophy (167). The allosteric actions
of anthocyanins and flavonoids to inhibit cataractogenesis in
vitro has been reported (168–171).
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Bilberry anthocyanins improved viability and differenti-
ation of cultured human corneal epithelial cells (172) and
wild Chinese blueberry (V. uliginosum L.) produced similar
benefits in the RPE cell line D407 (173). Blueberry treatment
improved the viability and differentiation of human RPE cells
during light-induced aging and after multiple replications in
vitro (174).

Several studies document a potential role for flavonoids
to improve retinal photoreceptor sensitivity in vitro by
affecting the rate of rhodopsin regeneration (166, 175–177),
or by modulating the inhibition of downstream G proteins
involved in the phototransduction cascade (178, 179), or
by downregulating retinoid-binding proteins (163). In an
in vitro bovine ciliary muscle preparation, anthocyanins
interacted with the endothelin-1 pathway to reduce muscle
contractility, which relates to accommodative processes for
distance vision in myopic eyes (180).

Blueberries, Anthocyanins, and Food
Processing
Fresh blueberries are delicate and often processed soon after
harvest to preserve them. Individual quick freezing is a
widely used means to preserve blueberries, to retain vitamin
C, total phenolics, anthocyanins, and antioxidant capacity
(181). The percentage loss of blueberry anthocyanins during
−18◦C storage was 12% after 10 mo of storage (181).

Dried blueberries can be stored at room temperature.
Whereas conventional thermal dehydration can cause sig-
nificant losses to anthocyanins (182), freeze-drying is an
excellent means to remove water while preserving blueberry
phytochemical quality (183). Freeze-dried blueberry powder
loses anthocyanins in a temperature-dependent manner with
a half-life of 139, 39, and 12 d when stored at 25, 42, and 60◦C,
respectively (184).

Radiant zone drying of blueberry extract did not affect
anthocyanin or total phenolic content (185). Nonthermal
technologies such as high pressure and pulsed electric fields
used in conjunction with refrigerated storage helped to
retain blueberry vitamin C, total phenolics, and anthocyanins
immediately after processing (186).

Blueberries can be processed into shelf-stable products
(e.g., canned fruit, juices, and preserves); however, processing
can lead to changes in the phytochemical profile. During
juice and purée processing, heat, oxygen, and enzymes
can degrade blueberry phytochemicals, with greatest losses
to vitamin C and anthocyanins. Blueberries are low in
ascorbic acid and high in anthocyanins (187), and notably
anthocyanins are readily degraded by ascorbic acid (188,
189).

Homogenization of whole blueberries leads to oxidative
loss of anthocyanins, proanthocyanidins, and flavonols, due
to polyphenol oxidase (190). Enzyme-catalyzed oxidative
damage can be mitigated by blanching prior to milling and
depectinization (191). Pasteurization to inactivate micro-
organisms and enzymes typically results in minor (<10%)
losses of blueberry polyphenolic compounds, although prod-
uct flavor can be adversely affected (192). Polyphenolic

compounds are lost when polyphenolic-rich skins and seeds
in the press cake are physically removed (193–195).

Shelf-stable blueberry products like jam (196), juice (197),
and extracts (198) can lose polyphenolic compounds when
stored at ambient temperature whereas refrigeration miti-
gates losses. Blueberry processing can drastically change fruit
composition; therefore, processing methods that optimize
extraction and shelf stability of health-beneficial compounds
are worthy objectives.

Conclusions
Selected research documenting blueberries as a health-
promoting food has been presented. Evidence supporting
a role for blueberries and anthocyanins in human health
is outlined according to human observational and clinical
evidence, followed by mechanistic research using animal
and in vitro models. Blueberry treatments generally produce
larger effects in experimental models involving stress or
disease risk.

The relative amount of evidence presented supporting
cardiovascular, glucoregulation, neuroprotection, and vision
benefits differs. For example, whereas there is abundant
epidemiological evidence for the cardioprotective effects of
blueberries and anthocyanins, epidemiological evidence for
blueberry or anthocyanin benefits in human vision is lacking.
And where there is substantial clinical evidence showing
blueberry-related improvements in cognition and brain
function, there is relatively little epidemiological evidence on
anthocyanins in this area.

The anti-inflammatory, antioxidant, and vasoprotective
effects of blueberry components together contribute to
well-regulated glucose delivery to insulin-sensitive tissues
and good metabolic function. Each of these aspects has
implications in multiple areas of healthy aging. Notably,
biomarkers of cardiometabolic dysfunction are associated
with risk for vascular and Alzheimer-type dementia in late
life (92, 93), which may be related to the mitigation of
neuroinflammation.

Improvement in anti-inflammatory biomarkers associ-
ated with blueberry intake is supported by observational
(8), clinical (48), animal (87), and in vitro (114) evidence.
Anti-inflammatory and immune benefits of blueberries may
involve mucin-associated and other colonic microbiota (67),
which constitutes a new domain for berry health research.

Blueberry benefits have been observed in both short-term
(see, for example, references 18, 78, and 100) and long-term
human interventions (see, for example, references 76 and 94),
which suggests multiple modes of action.

In blueberry health research, several important areas
remain poorly understood. For example, the dose depen-
dency of clinical effects is mostly unclear (18, 101, 142).
The bioactivity of anthocyanin metabolites in vivo, both
collectively and individually, is still mostly unknown, as
is the importance to health of anthocyanins localized in
tissues. Another important question is the relative bioactivity
in the colon of phenolic breakdown products of blueberry
anthocyanins compared with similar phenolic compounds
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from other plant foods in the diet. Notably, these gaps
in knowledge do not detract from our ability to tap into
blueberry health benefits by increasing public consumption.

This review of research findings will hopefully aid
consumers, healthcare providers, and the food and health
industry to understand the current state of knowledge on
blueberries and health. It can be safely stated that daily
moderate intake (50 mg anthocyanins, one-third cup of
blueberries) can mitigate the risk of diseases and conditions
of major socioeconomic importance in the Western world.
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