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Background: Nicotine is a major toxic component of tobacco smoke and has been recognized as a risk factor to induce oxidative tissue 
damage, which is a precursor to cardiovascular diseases, lung-related diseases, and cancers. Peaches (Prunus persica) have been used 
for the treatment of degenerative disorders, such as hypermenorrhea, dysmenorrhea, and infertility in Asian countries. In this study, 
we investigated the effects of white-fleshed peach on the excretion of nicotine metabolites and 1-hydroxypyrene in smokers and chronic 
nicotine-induced tissue damages in mice.
Methods: The concentrations of cotinine and 1-hydroxypyrene were measured in urine of smokers before or after intake of white-fleshed 
peaches. In addition, ICR mice were injected with nicotine (5 mg/kg body weight) and then orally administered with white-fleshed peach 
extracts (WFPE) (250 or 500 mg/kg body weight) for 36 days. The oxidative stress parameters and the activities of antioxidant enzymes 
were measured in liver and kidney tissues. Also, histological changes and nitrotyrosine expression were assessed. 
Results: Intake of white-fleshed peaches increased the urinary concentration of nicotine metabolites and 1-hydroxypyrene in 91.67%  
and 83.33% of smokers, respectively. WFPE decreased the malondialdehyde levels and recovered the activities of antioxidant enzymes 
in nicotine-injected mice. In addition, WFPE inhibited nitrotyrosine expression and inflammatory responses in the liver, kidney, and lung 
tissues of nicotine-treated mice. 
Conclusions: White-fleshed peaches may increase the metabolism of toxic components in tobacco smoke in smokers and protect normal 
tissues against nicotine toxicity in mice. Therefore, supplementation of white-fleshed peaches might be beneficial to smokers.
(J Cancer Prev 2017;22:22-32)
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INTRODUCTION

Smoking is a critical public health problem that negatively 

affects quality of life. It has been strongly implicated as a risk 

factor for chronic obstructive pulmonary disease, lung cancer, 

and cardiovascular disorders.1 Furthermore, cigarette smoking 

has been considered as an important risk factor that leads to 

cancers of the stomach, liver, and pancreas, as well as renal cell 

carcinoma and transitional cell carcinomas of the urinary bladder 

and renal pelvis.2-4

Nicotine, a major alkaloid constituent of tobacco, is metabo-

lized to several metabolites and excreted into the urine. In saliva 

or urine samples, nicotine metabolites have been used to 

evaluate smoking status quantitatively. Nicotine and its major 

metabolite, cotinine, have carcinogenic effects because they bind 

to nicotinic acetylcholine receptors on non-neuronal cells.5,6 

Chronic nicotine exposure induces lipolysis and hepatoto-

xicity.7,8 It results in oxidative stress by inducing the generation of 

reactive oxygen species (ROS). Previous experiments have shown 

that administration of nicotine to rats resulted in increased levels 

of lipid peroxidation products.9 Chronic nicotine exposure also 

causes oxidative damages by decreasing the activity of endo-
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genous antioxidants, such as catalase (CAT) and superoxide 

dismutase (SOD).10 These evidences support the role of oxidative 

stress in the toxicity of nicotine. 

Several natural products and compounds, including flavonoids, 

have been used to protect against toxicity induced by long-term 

drug treatments of chronic diseases or cancers and carcinogenic 

xenobiotics existing in many junk foods, alcohol, and other 

environmental toxicants. Peaches (Prunus persica (L.) Batsch), 

including various species, are consumed and used as a dietary 

supplement worldwide. P. persica seeds (Persicae Semen; Tounin) 

are well-known in many Asian countries as a traditional medi-

cine. The chemical constituents of peach seeds, including struc-

turally simple glycosides, have significant anti-tumor activity.11 

The ethanol extract of P. persica also inhibits mast cell-mediated 

allergic inflammatory reactions in in vivo models.12 Previous 

studies reported that the extract of P. persica flesh protects 

against hepatotoxicity and nephrotoxicity induced by cisplatin, 

which is prescribed to treat solid tumors in mice.13,14 Low-acid 

white-fleshed peaches are most popular in Asian countries, such 

as Korea, China, and Japan, while Europeans and North 

Americans consume mainly yellow-fleshed peaches with high 

acidity and low sweetness. Therefore, we investigated whether 

intake of white-fleshed peaches affects the excretion of nicotine 

metabolites and 1-hydroxypyrene in the urine of smokers. 

Furthermore, we evaluated the protective effect of white-fleshed 

peach extracts (WFPE) on chronic nicotine-induced tissue toxicity 

by determining the biochemical parameters and histological 

examination in an animal model.

MATERIALS AND METHODS
1. Materials

(−)-Cotinine, 1-hydroxypyrene, nicotine hydrogen bitartrate, 

sodium acetate, potassium cyanide, chloramine, barbituric acid, 

and -glucuronidase/arylsulfatase were obtained from Sigma-Al-

drich (St. Louis, MO, USA). Methanol was purchased from Merck 

(Darmstadt, Germany). All reagents used in this study were of 

analytical grade. The white-fleshed fruits of Prunus persica (L.) 

Batsch (Family Rosaceae; peaches) were purchased at the Kyeon-

ggi Dong-Boo Fruit Agriculture Co. (Incheon, Korea), where a 

voucher specimen (PE20060801) has been deposited. 

2. Subjects

Twelve healthy adult Korean male smokers volunteered for the 

study to investigate the effects of white-fleshed peaches on the 

excretion of nicotine metabolites and 1-hydroxypyrene into the 

urine. Subjects signed the informed consent form; smoking 

status and number of cigarettes per day were assessed using a 

self-administrated questionnaire. Urine, saliva, and blood were 

collected before intake of white-fleshed peaches and four days 

after intake. Participants intaked three fruits a day for four days. 

Before the study began, informed written consent was collected 

from all participants according to the ethical guidance of the 

Institutional Review Board of Yonsei University College of 

Dentistry, Seoul, Korea.

3. Determination of nicotine metabolite 

An aliquot of urine sample (500 L) was mixed with 500 L 

ethanol, 200 L 4 M acetate buffer (pH 4.7), 100 L 1.5 M 

potassium cyanide, 100 L 0.44 M chloramine, and 500 L 78 mM 

barbituric acid. As a reference, 500 L urine sample were diluted 

with 1.4 mL deionized water. After 100 minutes at room 

temperature, absorbance was measured at 508 nm using a 

microplate reader (BIO-RAD Laboratories, Hercules, CA, USA). 

Since values obtained by the colorimetric method were sums of 

nicotine metabolites, we expressed them as cotinine equivalent 

concentrations using cotinine as a standard.

4. Determination of 1-hydroxypyrene 

Ten milliliters of urine were transferred to a flask. The pH of 

the solution was adjusted to 5.0 with 1 M HCl, and then 2.5 mL 0.5 

M acetate buffer (pH 5.0) were added. After addition of 20 L 

-glucuronidase/arylsulfatase (131,400 units/mL and 7,500 

units/mL at pH 5.0 and 37oC, respectively), the flask was placed in 

a shaker for 16 hours at 37oC to completely hydrolyze the 

polycyclic aromatic hydrocarbons (PAHs) hydroxide conjugates. 

After hydrolysis, samples were centrifuged at 850 ×g for 10 

minutes, and the supernatant was used for solid phase 

extraction. The Discovery C18 solid phase extraction cartridge 

(Supelco, Bellefonte, PA, USA) was pretreated with 5 mL of 

methanol and 5 mL deionized water. The hydrolyzed urine 

sample was loaded onto the cartridge at a flow rate of ＜1 

mL/min. The column was washed with 10 mL of water and 10 mL 

30% methanol to remove the matrix interferences. After the 

cartridges were dried completely, the trapped metabolites were 

eluted with 4 mL methanol. The eluate was concentrated almost 

to dryness under a gentle stream of nitrogen and dissolved in 1 

mL methanol. The solution was filtered through a 0.2-m filter 

and stored at −20oC before the high-performance liquid 

chromatography (HPLC) analysis. The stock standard solution 

(0.2 g/L) of 1-hydroxypyrene was prepared by dissolving 5.0 mg of 

solid standard in methanol in a 25-mL volumetric flask. Dilutions 
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in methanol were prepared to concentrations of 100 and 1.0 g/L 

and stored in the dark at 4oC.

The Shimadzu HPLC system consists of a model SCL-10AVP 

system controller, a model LC-10ADVP micro-plunger pump, a 

model DGU-14A degasser, a model SIL-10ADVP auto sampler, a 

model CTO-10ASVP column oven, and a model RF-10AXL 

fluorescence detector (Shimadzu, Kyoto, Japan). The system was 

monitored by Shimadzu Class VP software (ver. 6.12 SP3). The 

reverse-phase chromatography was performed on a Discovery 

C18 column (150.0 × 4.6 mm, 5 m particle size; Supelco). The 

mobile phase was methanol-water (60:40, v/v) at a flow-rate of 1 

mL/min. The injection volume was 10 L, and the total run time 

was 30 minutes. The retention time of 1-hydroxypyrene in these 

conditions was 17 minutes. The eluted peaks were monitored at 

excitation and emission wavelengths of 242 and 388 nm, 

respectively.

5. Measurement of creatinine and cotinine 

Urinary creatinine levels were evaluated spectrophoto-

metrically, using commercially available kits (Asan Pharmaceu-

tical, Seoul, Korea). Salivary cotinine levels were determined 

using a High Sensitivity Salivary Cotinine Quantitative Enzyme 

Immunoassay kit (Salimetrics, State College, PA, USA).

6. Preparation of white-fleshed peach extracts 

The pericarps and seeds were removed from peaches, and the 

collected white-flesh was extracted thrice in five volumes (w/v) of 

80% ethanol for 48 hours at room temperature. The extracts were 

filtered, concentrated by vacuum evaporating the solvent in a 

rotary evaporator, and freeze-dried. The dried extracts of 

white-fleshed peaches were stored at −20oC. 

7. Animals and experimental design 

Male ICR mice (25-30 g body weight, 5-week-old) were 

purchased from the Central Laboratory Animal Inc. (Seoul, 

Korea). They were provided free access to a commercial rodent 

chow (Daejong Inc., Seoul, Korea) and tap water ad libitum. All 

animals were housed under specific pathogen-free conditions 

with a 12 hours light-dark cycle and a relative humidity of 55% ± 

5% at 25oC ± 2oC. All experimental procedures were performed in 

accordance with the guidelines and regulation for the use and 

care of animals established by the Animal Ethics Committee of 

Yonsei University College of Dentistry (IACUC Approval Number: 

2012-0092). Mice randomly divided into five groups, each with six 

animals of similar average body weights. Group I as control mice 

were intraperitoneally injected with saline. Group II was 

administrated WFPE daily at a dose of 500 mg/kg body weight 

orally alone. Group III was injected with nicotine hydrogen 

bitartrate intraperitoneally at a dose of 5 mg/kg body weight daily 

for 5 weeks. Group IV or V received daily intraperitoneal 

injections of nicotine 5 mg/kg and oral administration of WFPE 

250 mg/kg or 500 mg/kg for 5 weeks. The individual body weights 

of all animals were measured once every other day. At the end of 

the experiment, all mice were anesthetized, and blood samples 

were taken from the intracardiac puncture. The blood samples 

were allowed to clot at room temperature for 2 hours, and then 

centrifuged at 2,000 ×g for 20 minutes to obtain the serum. The 

serum samples were stored at −80oC to assess hepatic and renal 

function. The liver, kidney, and lung tissues were removed for the 

biochemical assay and histopathological examination.

8. Determination of serum biochemical parameters

In order to evaluate hepatic function, serum alanine amino-

transferase (ALT) and aspartate aminotransferase (AST) levels 

were measured. Serum blood urea nitrogen (BUN) and creatinine 

levels were assessed as indicators of renal function. All bio-

chemical assays were performed using commercially available 

kits from YeongDong Pharmaceutical Co. (Seoul, Korea) according 

to the manufacturer’s instructions. The absorbance of all bio-

chemical assays were measured in a POLARstar Omega micro-

plate reader (BMG LABTECH, Offenburg, Germany). 

9. Preparation of tissue homogenates

The liver and kidney tissues isolated from all mice were 

immediately washed with an ice-cold PBS (pH 7.4) to remove the 

blood. The tissues were cut into small pieces with scissors on ice. 

The sliced tissues (100 mg) were subsequently homogenized in 

1.0 mL of cold 1.15% KCl buffer (pH 7.4) including 100 mM 

phenylmethylsulfonyl fluoride. The homogenates were centri-

fuged at 800 ×g  for 20 minutes at 4oC. Aliquots of the super-

natant were collected and stored at −80oC to measure the levels 

of lipid peroxidation and glutathione (GSH) and the activity of 

antioxidant enzymes. Total protein concentrations in the 

supernatants were determined using a bicinchoninic acid protein 

assay kit (Pierce Biotechnology Inc., Rockford, IL, USA). 

10. Determination of lipid peroxidation and glutathione 
levels

In the homogenates of the liver and kidney tissues, the level of 

malondialdehyde (MDA), an indicator of lipid peroxidation, was 

determined by monitoring thiobarbituric acid (TBA) reactive 

substance formation as described previously.15 Lipid peroxi-
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dation was expressed in terms of MDA equivalents using an 

extinction coefficient of 1.56 × 105 M−1cm−1 and the final MDA 

level is represented as mol per g tissue. MDA reacts with TBA in 

the homogenate sample to form a colored complex that has an 

absorbance at 532 nm in a spectrophotometer. 1,1,3,3-tetrame-

thoxypropane was utilized as a standard curve. The total GSH 

content of the tissue homogenates was detected at 412 nm 

colorimetrically using a reaction with Ellman’s reagent [5,5'-dithi-

obis(2-nitrobenzoic acid) or DTNB].16 GSH level is expressed as 

M per g tissue. 

11. Measurement of antioxidant enzyme activities 

SOD activity was measured using the SOD determination kit 

(Sigma-Aldrich) in accordance with the manufacturer’s protocols. 

SOD assay kit-WST allows SOD assaying by utilizing Dojindo’s 

highly water-soluble tetrazolium salt, WST-1 [2-(4-lodophe-

nyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyle)-2H-tetrazolium, 

monosodium salt] for detection of the superoxide anions 

generated by xanthine oxidase and xanthine. One unit (U) of SOD 

represents the amount of enzyme needed to inhibit 50% of the 

dismutation of superoxide radicals. 

CAT activity was measured by the Catalase Assay Kit (Cayman 

Chemical, Ann Arbor, MI, USA), which utilizes the peroxidase 

function of CAT for determination of enzyme activity. It is based 

on an enzyme reaction with methanol in the optimal concen-

tration of hydrogen peroxide. One unit (U) of CAT activity is 

defined as the amount of enzyme that results in the formation of 

1 nM of formaldehyde per minutes at 25oC. 

The glutathione peroxidase (GPx) activity was determined 

using a glutathione peroxide assay kit (Cayman Chemical, Ann 

Arbor, MI, USA) according to the manufacturer’s instructions. The 

assay indirectly measures GPx activity using a coupled reaction 

with GSH reductase by monitoring the oxidation of reduced 

NADPH at 340 nm. One unit (U) of GPx activity is defined as the 

amount of enzyme that will oxidize 1.0 nM of NADPH per minutes 

at 25oC. GPx activity was calculated using the actual extinction 

coefficient for NADPH at 340 nm (6.22 × 106 M−1ㆍcm−1). 

Enzyme activities are expressed as U per mg tissue protein.

12. Histology and immunohistochemistry

The liver, kidney, and lung tissues were fixed in 10% buffered 

formalin solution and embedded in paraffin. Tissue specimens 

were cut into sections 5-m thick and stained with hematoxylin 

and eosin. For immunohistochemical analysis, the sections were 

incubated with 3% hydrogen peroxide in absolute methanol for 

10 minutes at room temperature, followed by 30 minutes of 

incubation with 3% bovine serum albumin in PBS. All tissue 

sections were incubated with primary antibodies against 

nitrotyrosine (Millipore, Billerica, MA, USA) for 1 hour at room 

temperature in a humidified chamber. After washing thrice with 

PBS containing 0.05% Tween-20, the specimens were incubated 

with horseradish peroxidase-conjugated antibody (Zymed Lab., 

San Francisco, CA, USA), and then stained with 

3,3-diaminobenzidine as chromogen (Life Science Division, 

Mukileto, WA, USA). The sections were counterstained with 

Mayer’s hematoxylin and evaluated with the Zeiss Axio Imager 

microscope. 

13. Statistical analysis

Data is expressed as the mean ± SE (SEM). Groups of data were 

compared with one-way ANOVA followed by Tukey’s multiple 

comparison test. P-values of less than 0.05 were considered 

statistically significant. Statistical analysis was performed with 

IBM SPSS software ver. 21 (IBM Co., Endicott, NY, USA).

RESULTS
1. Effect of white-fleshed peach on the excretion of 

nicotine metabolites and 1-hydroxypyrene in the 
urine of smokers

Nicotine is metabolized into several metabolites and excreted 

in the urine. Cotinine, the major metabolite of nicotine, is a 

sensitive and specific biochemical marker of exposure to cigarette 

smoke. The main metabolite of PAHs, 1-hydroxypyrene, is pre-

ferentially used as a biomarker of carcinogen exposure such as 

cigarette smoke.17 As shown in Figure 1A, intake of white-fleshed 

peaches increased the concentration of nicotine metabolites 

excreted in the urine of 11 out of 12 smoker volunteers (91.67%), 

compared to levels before intake (control). Salivary cotinine 

concentration was used for correction of urinary nicotine 

metabolite concentration. Intake of white-fleshed peaches raised 

the urinary level of 1-hydroxypyrene excreted from 10 out of 12 

smoker volunteers (83.33%) (Fig. 1B). Urinary 1-hydroxypyrene 

concentration was corrected by urinary creatinine concentration. 

Intake of white-fleshed peaches did not have a remarkable effect 

on the average salivary and plasma cotinine concentrations, 

although salivary and plasma cotinine concentrations showed 

individual differences.
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Figure 1. Effect of white-fleshed 
peach on the excretion of nicotine 
metabolites and 1-hydroxypyrene in 
urine of smokers. Urine and saliva of
subjects were collected before intake 
of white-fleshed peach and 4 days af-
ter intake. (A) Nicotine metabolite 
concentration in urine and cotinine 
concentration in saliva were meas-
ured by the colorimetric method and
the enzyme immunoassay, respectively.
(B) The 1-hydroxypyrene and crea-
tinine concentrations in urine were 
measured by high-performance liquid
chromatography analysis and colori-
metric method, respectively. Urinary
nicotine metabolite concentration and
1-hydroxypyrene concentration were 
corrected by salivary cotinine concen-
tration and urinary creatinine con-
centration, respectively. Data are ex-
pressed as mean ± SEM. *P ＜ 0.05
versus control (before intake).

2. Effect of white-fleshed peach extracts on nephro-
toxicity and hepatotoxicity in nicotine-injected mice

We conducted an animal experiment to study the effect of 

white-fleshed peaches on tissue toxicity by chronic nicotine 

treatment. First, to evaluate the effect of nicotine toxicity and 

WFPE administration on body weight, we measured the weights 

of all mice every other day during the experimental period. Body 

weights of the control mice gradually increased, while the 

nicotine group gained weight up to day 20 and lost weight 

thereafter until the end of the experiment (data not shown). 

However, administration of WFPE restored the decreased body 

weight in nicotine-injected mice. 

The protective effect of WFPE against chronic nicotine-in-

duced renal and hepatic toxicity was assessed by measuring 

biochemical parameters in sera of the mice. We analyzed BUN and 

creatinine levels for kidney function, and AST and ALT levels for 

liver function. The mice treated with WFPE alone did not show 

any kidney or liver dysfunction, but nicotine raised the levels of 

all biochemical parameters in the mouse sera (Fig. 2). In contrast, 

WFPE treatment dose-dependently lowered serum levels of BUN, 

creatinine, AST, and ALT that were elevated by nicotine. In 

particular, the serum BUN and ALT levels were recovered almost 

to control levels at a WFPE dosage of 500 mg/kg. 

3. Effect of white-fleshed peach extracts on oxidative 
damages in liver and kidney tissues of nicotine-in-
jected mice

To investigate the effect of WFPE on chronic-induced oxidative 

tissue damages, MDA, and GSH contents, as well as antioxidant 

enzyme activities, were measured in the liver and kidney tissue 

homogenates from all the mice. The level of MDA, which is a 

major degradation product of lipid peroxidation, increased after 

chronic nicotine treatment when compared to the control group 

(Fig. 3A). However, administration of higher-dose WFPE to 

nicotine-injected mice significantly reduced tissue MDA levels 

and showed a more pronounced reduction effect in the liver than 

the kidney.

The antioxidative status was assessed by measuring GSH 

content and the activities of antioxidant enzymes in the liver and 

kidney tissues. In the nicotine-injected mice, the level of GSH and 

the activities of SOD, GPx, and CAT were significantly lower than 
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Figure 2. Effect of white-fleshed peach extracts (WFPE) on chronic nicotine-induced nephrotoxicity and hepatotoxicity in mice. Nicotine (5 
mg/kg body weight [BW]) and/or WFPE (250 mg/kg BW or 500 mg/kg BW) were administered to mice (n = 6) once daily for 5 weeks. The 
control mice (n = 6) received saline alone. (A) The serum blood urea nitrogen (BUN) and creatinine levels were measured using commercially 
available kits for analysis of nephrotoxicity. (B) The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 
were analyzed as evidence of hepatotoxicity. Data are expressed as mean ± SEM (n = 6 per group). #P ＜ 0.05 versus control group; *P
＜ 0.05 versus nicotine group.

the control group (Fig 3B and 3C). The WFPE-treated group 

showed recovery of GSH levels and antioxidant enzyme activities. 

4. Effect of white-fleshed peach extracts on nicotine- 
induced histological changes and nitrotyrosine ex-
pression in liver, kidney, and lung tissues

Histological analysis revealed that chronic nicotine admi-

nistration resulted in significant tissue damage and changes 

when compared to the tissues of control mice (Fig. 4A). Mi-

croscopic evaluation of the liver in the control group showed 

hepatocytes arranged in rows that radiate out from the central 

vein. In the liver tissues of nicotine-injected mice, however, 

severe necrosis of hepatocytes and infiltration of inflammatory 

cells were present; additionally, sinusoidal congestion was 

observed. Treatment with WFPE at 250 mg/kg reduced necrosis 

and showed moderate infiltration of inflammatory cells. In the 

liver sections of the higher dose WFPE-treated mice, infla-

mmatory cell infiltrates were rare, and necrosis was not observed. 

The normal kidney samples showed prominent regular struc-

tures of glomeruli and renal tubules. In the nicotine alone group, 

kidney sections showed vacuolation of tubular cells and wide 

dilatations in the glomeruli. Treatment with WFPE dose-de-

pendently inhibited the morphologic changes induced by 

nicotine. 

In the lung tissue, the control group showed normal alveoli 

with thin alveolar septa. However, nicotine treatment 

induced edema, moderate hemorrhage, and a remarkable 

thickening of the alveolar septa with hyperplasia of the 
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Figure 3. Effect of white-fleshed peach extracts (WFPE) on chronic nicotine-induced oxidative stress in mouse tissues. After mice were adminis-
trated nicotine (5 mg/kg body weight [BW]) and/or WFPE (250 mg/kg BW or 500 mg/kg BW) for 5 weeks, liver and kidney tissues were collected
and homogenized. (A) The level of malondialdehyde (MDA), as an indicator of lipid peroxidation, was measured in tissue homogenates. (B) 
Glutathione (GSH) content was evaluated by the reaction with Ellman’s reagent. (C) Among the enzymatic antioxidants, superoxide dismutase 
(SOD), glutathione peroxidase (GPx), and catalase (CAT) were analyzed by commercial available kits, respectively. Data are expressed as mean
± SEM (n = 6 per group). #P ＜ 0.05 versus control group; *P ＜ 0.05, **P ＜ 0.01 versus nicotine group.
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Figure 4. Effect of white-fleshed peach extracts (WFPE) on histological changes and nitrotyrosine expression in the liver, kidney, and lung 
tissues of chronic nicotine-injected mice. The liver, kidney, and lung tissues from mice, which were administrated nicotine (5 mg/kg body 
weight [BW]) and/or WFPE (250 mg/kg BW or 500 mg/kg BW) for 5 weeks, were fixed and stained. (A) The morphological features of tissue 
sections were evaluated by Hematoxylin and eosin staining (×200). (B) Nitrotyrosine expressions were evaluated by immunohistochemistry 
(×200).
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epithelial cells. WFPE treatment in nicotine-injected mice 

reduced thickening of the alveolar septa and edema in a 

dose-dependent manner.

We immunohistochemically analyzed the expression of nitro-

tyrosine in the liver, kidney, and lung tissues of the control mice 

and nicotine-injected mice with or without WFPE treatment (Fig. 

4B). Substantially enhanced levels of nitrotyrosine were observed 

in three tissues of nicotine-injected mice. However, WFPE 

treatment dose-dependently inhibited nicotine-induced nitro-

tyrosine formation. 

DISCUSSION

Tobacco smoking was recognized as a major cause of mortality 

and morbidity since environmental tobacco smoke was found to be 

a human lung carcinogen by the US Environmental Protection 

Agency in 1992. Over 4,000 chemicals have been identified in 

tobacco smoke, including 69 known carcinogens and hundreds 

that are hazardous.18 It has been reported that nicotine, a major 

component of tobacco smoke and a highly addictive drug, plays an 

important role in the development of cardiovascular and lung 

diseases.5,19,20 As nicotine enters the human body through tobacco 

smoking, it is efficiently absorbed into the bloodstream through 

the lungs and rapidly delivered to the brain.21 Nicotine is also 

absorbed through the mucosal lining of the mouth and nose, and 

even through the skin. Nicotine is extensively metabolized to a 

number of metabolites; cotinine, the primary metabolite of 

nicotine, is formed after C-oxidation by hepatic cytochrome P450 

(CYP2A6).22 Cotinine is further metabolized by the same enzyme 

system as trans-3'-hydroxycotinine (hydroxycotinine) and other 

minor metabolites including norcotinine.23 PAHs, including the 

widely studied benzo[a]pyrene, are considered the main car-

cinogens of cigarette smoke. PAHs bind to aryl hydrocarbon 

receptor after entering the body, and induce cytochrome P450 

drug-metabolizing enzymes, such as CYP1A1, CYP1A2, CYP1Ba, and 

CYP3A4, which metabolize PAHs into various PAH derivatives, such 

as hydroxylated PAHs and PAH quinones.24 Urinary 

1-hydroxypyrene, a monohydroxylated metabolite of pyrene, has 

been widely used as a biomarker of total PAH uptake in smokers 

and nonsmokers.25

The intake of fruits and vegetables, including flavonoids, is 

closely related to the prevention and reduction in the risk of 

chronic diseases, such as inflammation, various cancers, and 

cardiovascular disorders. P. persica fruits have moderate effects 

on blood circulation, recovery from exhaustion, detoxification, 

reinforcement of immune ability, and cosmetic treatment of the 

skin.26 However, the effect of P. persica fruits on the deto-

xification of smoking has not yet been reported. Thus, we firstly 

investigated whether white-fleshed peaches have effects on the 

excretion of nicotine metabolites and 1-hydroxypyrene in the 

urine of smokers. Intake of white-fleshed peaches increased the 

concentration of nicotine metabolites in the urine of 91.67% of 

smokers. In addition, the concentration of urinary 1-hydro-

xypyrene, the major metabolite of PAH, increased in 83.33% of 

smokers after intake of peach fruit. Thus, intake of 

white-fleshed peaches increased the excretion of nicotine 

metabolites and 1-hydroxypyrene in the smokers. Therefore, 

intake of white-fleshed peaches and related processed foods 

might be an effective method for the detoxification of nicotine 

in smokers and nonsmokers who are exposed to environmental 

tobacco smoke.

Nicotine, a major pharmacologically active component of 

tobacco smoke, triggers an accumulation of free radicals or ROS, 

and consequently causes oxidative stress, cytotoxicity, and tissue 

damage. In our animal study, chronic nicotine exposure inhibited 

a gain of body weight, but this weight loss was blocked in the mice 

that were administered extracts of white-fleshed peach at 250 

mg/kg or 500 mg/kg body weight. These results indicate that 

chronic nicotine exposure eventually induces systemic toxicity, 

and WFPE can suppress nicotine toxicity by being absorbed into 

the bodies of animals.

The liver and kidney are highly susceptible to the oxidative 

stress associated with the toxicity of nicotine. Our results showed 

that chronic nicotine exposure caused hepatic and renal damage 

associated with an accumulation of lipid peroxidation products. 

However, WFPE treatment dose-dependently inhibited nephro-

toxicity and hepatotoxicity by reducing serum levels of BUN, 

creatinine, AST, and ALT. A high-dose of WFPE did not affect the 

functional index of the liver and kidney in normal mice, but did 

reduce nicotine-increased levels of BUN and ALT to levels similar 

to the control group. In addition, a marked increase in the MDA 

level was identified in the liver and kidney homogenates of mice 

chronically exposed to nicotine; oral administration of WFPE 

blocked this increase. Furthermore, WFPE treatment blocked the 

decrease of GSH content and inhibition of antioxidant enzymes 

activities, including SOD, GPx, and CAT, in the liver and kidney 

tissues of nicotine-injected mice. These results show that orally 

administered WFPE attenuates oxidative stress by preventing 

nicotine-induced reductions in GSH content and the activities of 

antioxidant enzymes. 

The lung, the primary site exposed to tobacco smoke, is highly 

susceptible to free radical generation. Our histological data 
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showed nicotine-induced toxicity in the lung tissue, as well as in 

the liver and kidney tissues, but organ damages caused by 

nicotine were decreased by WFPE treatment. In immuno-

histochemistry, nitrotyrosine, a biomarker of oxidative stress, 

was positively expressed in the liver, kidney, and lung tissues of 

nicotine-injected mice, while its expression was dose-depen-

dently suppressed in the WFPE-treated group. Nitrotyrosine is 

formed on tyrosine residues by toxic peroxynitrite derived from 

nitric oxide (NO) and superoxide anion (O2
−), which is elevated 

in conditions of oxidative stress in many diseases, such as infla-

mmation, cytotoxicity, and cancer.27 Therefore, inhibition of 

nicotine-induced nitrotyrosine formation by WFPE treatment 

indicates a decrease of oxidative stress.

In conclusion, WFPE may mitigate nicotine toxicity by 

promoting the excretion of nicotine metabolites. The 

protective effect of WFPE against tissue damages by chronic 

nicotine exposure, may be mediated through the inhibition of 

oxidative stress by enhancing of antioxidant capacities. Thus, 

white-fleshed peach may be a beneficial supplement for 

smokers.
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