See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/8362934

Antifungal limonoids from the fruits of Khaya senegalensis

Article in Fitoterapia · October 2004

DOI: 10.1016/j.fitote.2004.06.001 · Source: PubMed

CITATIONS		reads 198	
4 author	s, including:		
	Samir A M Abdelgaleil Alexandria University 89 PUBLICATIONS 1,845 CITATIONS SEE PROFILE	0	Matsumi Doe Osaka City University 109 PUBLICATIONS 1,708 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Artemisinin and Related Derivatives as potent crop protection agents View project

FITOTERAPIA

Fitoterapia 75 (2004) 566-572

www.elsevier.com/locate/fitote

Antifungal limonoids from the fruits of *Khaya senegalensis*

Samir A.M. Abdelgaleil^{a,*}, Tetsuo Iwagawa^b, Matsumi Doe^c, Munehiro Nakatani^b

^aDepartment of Pesticide Chemistry, Faculty of Agriculture, Alexandria University, Alexandria, Egypt ^bDepartment of Chemistry and Bioscience, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan ^cAnalytical Division, Graduate School of Science, Osaka City University, 3-3-7 Sugimoto,

Sumiyoshi, Osaka 558-8585, Japan

Received 10 March 2004, accepted in revised form 3 June 2004 Available online 27 July 2004

Abstract

Investigation of the fruits of *Khaya senegalensis* resulted in the isolation of three new mexicanolide limonoids containing a rare conjugated diene lactone system named seneganolide A (1), 2-hydroxyseneganolide A (2) and 2-acetoxyseneganolide A (3). Two known limonoids, 3-deacetyl-7-deacetoxy-7-oxokhivorin (4) and methyl 6-hydroxyangolensate (5), were also found. The structures of the new compounds were elucidated on the basis of spectral methods. The antifungal activity of compounds 1, 3 and 5 was tested against the fungus *Botrytis cinerea*. © 2004 Elsevier B.V. All rights reserved.

Keywords: Khaya senegalensis; Limonoids; Antifungal activity

1. Introduction

Khaya senegalensis (Desr.) (Meliaceae) is a large tree native to the sub-Sahara savannah from Senegal to Uganda and is used in traditional medicines in Africa [1].

^{*} Corresponding author. Tel.: +81 99 285 8667; fax: +81 99 285 8666.

E-mail address: samir@chem.agri.kagoshima-u.ac.jp (S.A.M. Abdelgaleil).

⁰³⁶⁷⁻³²⁶X/\$ - see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.fitote.2004.06.001

The decoction of the bark is extensively used as a febrifuge, which could be associated with its use as an antimalarial drug [2]. We have reported the isolation of several types of rings B,D-opened limonoids including methyl angolensates [3], mexicanolides [4,5], and rearranged phragmalins [6,7] from the stem bark ether and acetone extracts of *K. senegalensis*.

In our continuing search for new biologically active limonoids, we have investigated the chemical constituents of the ether extract of fruits of *K. senegalensis* collected from Mbour, Senegal. Three new mexicanolide limonoids named seneganolide A (1), 2-hydroxyseneganolide A (2) and 2-acetoxyseneganolide A (3) together with two known limonoids, 3-deacetyl-7-deacetoxy-7-oxokhivorin (4) and methyl 6-hydroxyangolensate (5) have been isolated. The structure of the new compounds were elucidated on the basis of spectral data interpretation. Three of the isolated compounds (1, 2 and 5) were examined for their antifungal activity on the *Botrytis cinerea* (Pers. Fr.).

2. Experimental

2.1. General

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ -NMR spectra were measured at 600 and 125 MHz at 27 °C in CDCl₃ on a JEOL FX-600 spectrometer. Optical rotation was measured at 22 °C using JASCO J-720 spectropolarimeter. IR (KBr) and UV (MeOH) were recorded on JASCO FT/IR 5300 and Shimadzu UV-210A spectrophotometers. HPLC was performed on a Waters $\mu Bondapak$ C_{18} column.

2.2. Plant material

The fruits of *K. senegalensis*, collected in September 2000 from Mbour City, Senegal, were identified by Mr. Ahmed Moharib of Alexandria University. A voucher specimen (KSF-1) is deposited in the Faculty of Science, Kagoshima University.

2.3. Extraction and isolation

The air-dried fruits of *K. senegalensis* (450 g) were extracted with Et₂O (2.5 l) at room temperature to yield 5.6 g of extract. The extract was fractionated by droplet countercurrent chromatography (DCCC) using CH₂Cl₂–MeOH–H₂O (5:5:3 v/v) in an ascending mode to give 300 fractions. These fractions were pooled into three fractions, Fr 1 (216–229: 77 mg), Fr 2 (282–293: 1.4 g) and Fr 3 (294–296: 600 mg), on the basis of similar TLC profiles. Fr 1 was purified repeatedly through HPLC with 40–50% H₂O/MeOH as solvent to give 2 (1.8 mg). Fr 2 was subjected to HPLC with 30–50% H₂O/MeOH to give 1 (24 mg) and 3 (40 mg). Similar purification of Fr 3 with 40–50% H₂O/MeOH gave 4 (6.9 mg) and 5 (45 mg).

Seneganolide A (1). White amorphous powder; $[\alpha]_D+245^\circ$ (c 0.30, MeOH); UV max (MeOH): 203 (log ε 4.11), 286 (4.04) nm; IR bands (KBr): 3600–3400, 2949, 1740–1700, 1593, 1261, 1026, 873 cm⁻¹; C₂₇H₃₂O₇; HRFABMS *m*/*z*: 469.2222 [M+H]⁺, Δ +0.2 mmu. (calculated for C₂₇H₃₂O₇ 468.2148). ¹H and ¹³C-NMR data: see Tables 1 and 2.

2-Hydroxyseneganolide A (2). White amorphous powder; $[\alpha]_D + 264^\circ$ (c 0.09, MeOH); IR bands (KBr): 3600–3400, 1716, 1263, 1026, 873 cm⁻¹; C₂₇H₃₂O₈; HRFABMS *m/z*: 485.2170 [M+H]⁺, Δ =0.5 mmu. (calculated for C₂₇H₃₂O₈ 484.2097). ¹H and ¹³C-NMR data: see Tables 1 and 2.

2-Acetoxyseneganolide A (3). White amorphous powder; $[\alpha]_D+269^\circ$ (c 0.31, MeOH); UV max (MeOH): 203 (log ε 4.08), 284 (3.95) nm; IR bands (KBr): 3600–3400, 2953, 1740–1700, 1595, 1269, 1030, 873 cm⁻¹; C₂₉H₃₄O₉; HRFABMS *m/z*: 527.2281[M+H]⁺, Δ –0.4 mmu. (calculated for C₂₉H₃₄O₉ 526.2203). ¹H and ¹³C-NMR data: see Tables 1 and 2.

3. Results and discussion

Seneganolide A (1) was obtained as an amorphous powder. Its molecular formula $C_{27}H_{32}O_7$ was shown by HRFABMS. The IR spectrum exhibited characteristic absorption bands for hydroxyl (3600–3400 cm⁻¹), carbonyl groups (1740–1700 cm⁻¹) and furan ring (873 cm⁻¹). Strong absorption bands at 203 nm (log ε 4.11) and 286 (4.04) in the UV spectrum suggested the presence of conjugated double bond and enone groups. ¹H and

H-NMK data of compounds 1–3						
Proton	1	2	3			
2	3.07 d (5.9)	3.01 d (6.1)	3.08 d (5.8)			
3	3.77 d (5.2)	3.52 s	3.68 s			
5	2.85 dd (9.7, 1.5)	2.76 s	3.04 <i>s</i>			
6	2.46 dd (16.8, 9.7)	4.35 s	5.44 <i>s</i>			
	2.35 dd (17.2, 1.6)					
9	2.27 br dt (12.2, 2.8)	2.25 dd (13.0, 2.9)	2.28 br dd (14.7, 2.9)			
11 α	1.73 ddd (13.2, 9.1, 4.3)	1.78 <i>m</i>	1.86 <i>m</i>			
11β	1.47 ddd (14.5, 12.1, 5.2)	1.30 ddd (25.7, 14.0, 4.4)	1.49 ddd (21.2, 13.0, 4.7)			
12α	1.26 ddd (14.1, 11.0, 5.3)	1.21 dd (14.2, 4.1)	1.25 dd (13.7, 8.9)			
12β	1.90 dt (14.1, 4.5)	1.93 dt (14.4, 4.1)	2.01 dt (13.7, 4.2)			
15	6.31 <i>s</i>	6.26 s	6.31 <i>s</i>			
17	5.14 <i>s</i>	5.06 s	5.12 <i>s</i>			
18	1.05 s	1.01 s	1.05 s			
19	1.20 s	1.42 <i>s</i>	1.22 <i>s</i>			
21	$7.50 \ d \ (1.5)$	7.48 dd (1.6, 0.7)	$7.52 \ br \ d \ (1.0)$			
22	6.48 br d (1.0)	6.45 br d (1.0)	6.49 br d (1.0)			
23	7.42 t (1.6)	7.40 t (1.6)	7.44 t (1.6)			
28	0.92 s	0.95 s	1.06 s			
29	0.72 s	0.97 s	1.00 s			
30	6.67 dd (6.0, 2.7)	6.64 dd (6.0, 2.9)	6.67 dd (6.0, 2.9)			
OMe	3.69 <i>s</i>	3.77 s	3.74 <i>s</i>			
OAc			2.18 s			

Table 1 ¹H-NMR data of compounds 1–3

Measured in CDCl₃ at 600 MHz; J values (in Hz) are presented in parentheses.

¹³C-NMR data (Tables 1 and 2) indicated the existence of five methyls (four tertiary and one methoxy), three methylenes, 10 methines (five olefinic) and nine non-protonated carbon atoms (three olefinic, one keto and two ester carbonyls). NMR data also revealed that seven elements of unsaturation were present as double bonds: four carbon–carbon double bonds and three CO, which suggests a pentacyclic structure for the molecule.

All of the proton-bearing carbons were assigned by the HMQC experiment. Extensive studies using spin-decoupling, ¹H-¹H COSY and HMBC spectra revealed 1 to be a mexicanolide-type limonoid. A singlet at δ 5.14 and a signal at δ 2.85 coupled with signals at δ 2.46 and 2.35 were assigned to H-17 and H-5, respectively. A methine proton at δ 2.27 (H-9) was coupled to a methylene proton at δ 1.47 (H-11 β) which in turn coupled with two protons of the adjacent methylene at 1.26 (12 α) and 1.90 (12 β) according to the structure of the C-9–C-12 fragment. A methine proton at δ 3.07 (H-2) attached to a carbon at δ 56.5 adjacent to a carbonyl at δ 213.9 (C-1) showed HMBC correlations with the ¹³C-NMR signals at δ 213.9, 80.2, 39.5, 51.2, 131.2 and 134.9 led to their assignments as C-1, C-3, C-4, C-10, C-30 and C-8, respectively. A methine proton at δ 2.85 (H-5) exhibited HMBC correlations with ¹³C-signals at δ 15.9 (Me-19), 51.2 (C-10), 39.5 (C-4), 80.2 (C-3), 32.7 (C-6), 173.9 (C-7), 53.6 (C-9), 26.1 (Me-28) and 14.2 (Me-29). These findings clearly characterized the second fragment, the dicyclo [3.3.1] decane ring system [2,8], including Me-28 and Me-29, and the side chain at C-5 of the molecule. Further, an olefinic proton at δ 6.31 (H-15) coupled to the ¹³C signals at δ 164.8 (C-16), 79.8 (C-17), 37.5 (C-13) and 134.9 (C-8). These correlations characterized the third fragment, C-8 to C-17 of C and D

Carbon	1	2	3
1	213.9 <i>s</i>	215.0 s	212.8 s
2	56.5 d	56.6 d	56.5 d
3	80.2 <i>d</i>	80.3 <i>d</i>	80.5 d
4	39.5 s	39.4 s	39.6 s
5	40.9 <i>d</i>	45.2 <i>d</i>	44.3 d
6	32.7 t	72.1 d	72.2 d
7	173.9 s	176.0 s	170.8 s
8	134.9 s	134.6 <i>s</i>	135.2 s
9	53.6 d	55.0 d	54.9 d
10	51.2 s	51.6 s	51.6 s
11	21.3 <i>t</i>	22.1 <i>t</i>	22.0 t
12	32.7 t	33.3 <i>t</i>	33.4 <i>t</i>
13	37.5 s	37.5 s	37.6 s
14	160.7 s	161.7 <i>s</i>	160.8 s
15	112.3 <i>d</i>	111.8 <i>d</i>	112.7 d
16	164.9 <i>s</i>	165.5 s	164.8 s
17	79.8 d	79.7 d	79.9 d
18	21.9 q	22.3 q	22.4 q
19	15.9 q	16.2 q	15.4 q
20	120.3 s	119.6 s	120.2 s
21	141.5 d	141.4 <i>d</i>	141.3 d
22	110.2 <i>d</i>	110.1 <i>d</i>	110.2 d
23	143.2 <i>d</i>	143.2 <i>d</i>	143.2 d
28	26.1 q	25.6 q	25.7 q
29	14.2 q	16.0 q	16.0 q
30	131.2 d	132.5 <i>d</i>	131.5 d
OMe	52.0 q	53.1 q	52.9 q
OCOCH3			169.9 s
OCOCH3			$20.9 \ q$

Table 2				
¹³ C-NMR	data	of	compounds	1–3

Measured in CDCl3 at 150 MHz.

rings of the molecule. The most interesting finding in this compound is the presence of a rare conjugated diene lactone, which indicated from the down-field proton signals at δ 6.31 (H-15) and 6.67 (H-30) and the ¹³C signals at δ 112.3 (C-15), 160.7 (C-14), 134.9 (C-8) and 131.2 (C-30).

Relative stereochemistry of the dicyclo[3.3.1]decane ring in seneganolide A (1) was elucidated by NOE studies [2,8]. The W-type long-range coupling between H-9 and H-30, and NOE of H-9 with Me-19 and H-5 with H-11 indicating that ring C is present in a skew boat form. NOE correlations (Fig. 1) of H-17 with H-12 β and H-11 β , and H-5 with H-11 β suggested a β orientation of these protons. On the other hand, the NOE correlations of H-9 with Me-18, H-12 α , H-11 α and Me-19 indicated α orientation of these protons (Fig. 1).

The second compound, 6-hydroxyseneganolide A (2), $C_{27}H_{32}O_8$, was isolated as an amorphous powder. Compound 2 showed IR and NMR spectra similar to those of 1 except for the presence of an additional hydroxyl group at C-6. The presence of only two methylene carbons in DEPT spectrum, a down-field ¹³C signal δ 72.1 and a proton signal at δ 4.35 indicated a hydroxyl group. The location of this hydroxyl group at C-6 was

570

Fig. 1. Significant NOE correlations in 1.

confirmed from the lack of multiplicity of H-5, which appeared as a singlet in **2** instead of a doublet of doublets as in **1** and from HMBC correlations of H-5 with ¹³C signals at δ 72.1 (C-6) and H-6 with ¹³C signals at δ 45.2 (C-5) and 39.4 (C-4). Therefore, compound **2** is the 6-hydroxy derivative of **1**.

Compound **3** (C₂₉H₃₄O₉) named 6-acetoxyseneganolide A, showed IR and UV spectra closely related to those of **1**. ¹H and ¹³C-NMR data of **3** were similar to those of **2** except for the presence of acetoxy group instead of hydroxyl group at C-6 of side chain. This was indicated from the appearance of two additional ¹³C signals at δ 169.7 *s* and 20.9 *q* and proton signal at δ 2.18 of acetoxy group and HMBC correlations (Fig. 2) of H-6 at δ 5.44

Fig. 2. Selected HMBC correlations in 3.

with carbon signal at δ 169.7 of acetoxy group and proton signal at δ 2.18 of acetoxy group with carbon signals at δ 72.2 (C-6). In addition to some changes of proton chemical shifts of H-6 and H-5 to be at δ 5.44 and 3.04 in **3** instead of 4.35 and 2.76, respectively.

The structure of known limonoids (4 and 5) was established by 1 H and 13 C-NMR analysis and HRFABMS analysis, as well as by comparison of NMR data with those reported in the literature [8,9].

Radial growth technique [10] was used to evaluate the antifungal activity of three of isolated compounds seneganolide A (1), 2-acetoxyseneganolide A (3) and methyl 6-hydroxyangolensate (5) on the fungus *B. cinerea*. Compound 3 at concentrations of 1000 and 1500 ppm showed an inhibition of mycelial growth of 61.50% and 68.33%, respectively, without significant differences from 1 at 1000 ppm (60.83%) and 5 at 1500 ppm (65.33%).

References

- [1] Darziel JM. The useful plants of West Tropical Africa. London: The Crown Agents for the Colonies; 1937.
- [2] Watt JM, Breyer-Brondwijk MG. The medicinal and poisonous plants of Southern and Eastern Africa. London: London Livingstone; 1962.
- [3] Abdelgaleil SAM, Okamura H, Iwagawa T, Doe M, Nakatani M. Heterocycles 2000;53:2233.
- [4] Nakatani M, Abdelgaleil SAM, Okamura H, Iwagawa T, Doe M. Chem Lett 2000:876.
- [5] Nakatani M, Abdelgaleil SAM, Kurawaki J, Okamura H, Iwagawa T, Doe M. J Nat Prod 2001;64:1261.
- [6] Abdelgaleil SAM, Okamura H, Iwagawa T, Sato A, Miyahara I, Doe M, et al. Tetrahedron 2001;57:119.
- [7] Nakatani M, Abdelgaleil SAM, Kassem SHMI, Takezaki T, Okamura H, Iwagawa T, et al. J Nat Prod 2002;65:1219.
- [8] Adesogan EK, Powell JW, Taylor DAH. J Chem Soc, C 1967:554.
- [9] Adesogan EK, Taylor DAH. J Chem Soc, C 1968:1974.
- [10] Pandey DK, Tripathi NN, Tripathi RD, Dixit SN. Z Pflanzenkrankh Pflanzenschutz 1982;89:344.